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Abstract
In this study, polyaniline (PANI)/graphene nanosheet (GNS) composites were synthesized 
through chemical oxidation polymerization by changing the weight ratio of aniline mono-
mers. To examine the morphological structure of the composites, scanning electron micros-
copy and transmission electron microscopy (TEM) were conducted. TEM results revealed 
that fibril-like PANI with a diameter of 50 nm was homogeneously coated on the surface of 
the GNS. The electrochemical properties of the composites were studied by cyclic voltam-
metry in 1 M H2SO4 electrolyte. Among the prepared samples, the PANI/GNS (having 40 wt% 
aniline content) showed the highest specific capacitance, 528 Fg-1, at 10 mVs-1. The im-
proved performance was attributed to the GNS, which provides a large number of active sites 
and good electrical conductivity. The resulting composites are promising electrode materials 
for high capacitative supercapacitors.
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1. Introduction

Graphene, a carbon material with a two-dimensional nanostructure, has attracted a 
great deal of attention because of its high surface area, electrical conductivity, optimal 
mechanical stiffness, and high chemical stability [1-3]. In electrochemical measure-
ments, multilayer graphene (from two to ten or more) is considered to be the promising 
electrode material for supercapacitors [4]. Conducting polymers are among the most 
extensively studied materials for supercapacitor electrodes, along with carbon and metal 
oxides. Among the conducting polymers, polyaniline (PANI) is widely used due to its 
low monomer cost, ease of synthesis, and environmental stability [5,6]. However, PANI 
has several disadvantages such as low cycle life and poor stability, because the oxidation 
state of emeraldine salt form of PANI can be changed during the repetitive charge/dis-
charge process [7]. The formation of composites of PANI and graphene can potentially 
be used to reinforce the stability of PANI and to maximize the capacitance value by 
synergistically exploiting the pseudo-capacitance of PANI and the high conducting and 
mechanical properties of graphene [8,9]. 

In this work, composites of PANI/graphene nanosheet (GNS) with different weight 
ratios are synthesized by chemical oxidation polymerization of aniline monomer (ANI) 
in an aqueous dispersion of graphene. The combination of the GNS with PANI highly 
enhanced the electrochemical performance because the GNS serves as a supporting ma-
terial and provides a large number of active sites. The electrochemical performance, 
morphology, and chemical structure of the prepared composites have been investigated 
in this study. 
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surface could be utilized for charge storage. 
Fig. 3 shows Fourier transform infrared spectroscopy spec-

tra of PANI nanofibers and PANI/GNS (having 40 wt% aniline 
content) composites. For PANI nanofibers, the absorption bands 
at 1563 and 1481 cm-1 are assigned to the C=C stretching of 
quinone rings and benzene rings. The C-N stretching vibration 
of the secondary aromatic amine and aromatic C-H bending ap-
peared on the characteristic bands at 1295 and 1110 cm-1 [13,14]. 
Also, these bands are observed in the spectrum of PANI/GNS 
(having 40 wt% aniline content) composites. The absorption 
band at 1563 cm-1 is attributed to the skeletal vibration of the 
GNS, which overlapped with the C=C stretching of quinone 
rings of PANI [15]. The morphology and structural properties of 
the composites were examined by scanning electron microscopy 
and transmission electron microscopy images presented in Fig. 
4. Transparent and wrinkled graphene sheets can be seen in Fig. 
4b. In the PANI/GNS (having 40 wt% aniline content) compos-
ite, the surface of the GNS was coated by fibril-like PANI with 

2. Experimental

Graphite oxide was synthesized from natural graphite (SP-1, 
Bay carbon) by a modified Hummer’s method [10]. The graph-
ite powder was added into a mixture of sulfuric acid, sodium 
nitrate, and potassium permanganate for acid treatment and the 
solution was maintained at 45°C for 2 h. A 30% H2O2 aqueous 
solution was then slowly added into the solution. The oxidized 
and treated solution was filtered and washed with HCl (10%) 
and washed with water and ethanol through centrifugation (3600 
rpm, 5 min) to remove residual graphite. GNS was prepared 
by the reduction of graphene oxide with sodium borohydride 
(NaBH4), as described elsewhere [11]. PANI/GNS composites 
were synthesized by chemical oxidation polymerization of ANI 
in the presence of grapheme suspension. A specified amount of 
GNS was added into 150 ml of 1 M HCl solution. The solution 
was sonicated for 2 h. Different amounts of ANI (20, 40, 60 and 
80 wt%) were then added to the above solution and the solution 
was sonicated for 30 min. A solution of ammonium persulfate as 
an oxidizing agent was added dropwise into the above solution. 
The temperature of the solution was kept at 0-5°C during the 
polymerization reaction. After 24 h, the reaction mixture was 
filtered and washed with distilled water and ethanol. Finally, it 
was dried in a vacuum oven at 60°C. All electrochemical tests 
were done in a three electrode system. The working electrode 
was prepared by casting a nafion-impregnated sample onto a 
glassy carbon electrode. Platinum wire and a saturated calomel 
electrode were then used as counter and reference electrodes, 
respectively. The measurements were carried out in 1 M H2SO4 
electrolyte. Electrochemical measurements were performed in 
an Iviumstat (Ivium Technologies, The Netherlands).

3. Results and Discussion

The specific capacitances of the prepared composites with 
different weight ratios of ANI are presented in Fig. 1. With 
the introduction of GNS into PANI, the PANI/GNS composites 
showed improved capacitance compared to that of PANI. In 
particular, the PANI/GNS composite having 40 wt% aniline 
content showed the highest capacitance among the prepared 
samples and it presented a maximum specific capacitance of 
528 Fg-1 at 10 mVs-1. Fig. 2 shows the cyclic voltammograms 
of the PANI/GNS composites as a function of aniline content. 
They show mixed behavior of electric double layer capacitance 
by the GNS component and redox (or faradaic) capacitance 
by the PANI. These enhanced specific capacitances are due to 
the GNS, which provided a large number of active sites and 
high conductivity [12]. Beyond 60 wt% aniline content, the 
composite showed slightly decreased capacitance values. It is 
thought that aniline content over 60 wt% would produce an 
excessively thick coating of PANI onto GNS. It was expected 
that such a thick PANI coating could not endow effective sur-
face area or a suitable pore structure for easy charge transfer 
and ion transport. Also, it was observed that the specific ca-
pacitance decreases as the scan rates were increased from 10 to 
100 mVs-1. At a high scan rate, the diffusion of electrolyte ions 
was limited by structural properties and only the outer active 

Fig. 1. Specific capacitance of the prepared composites at different scan 
rates from 10 to 100 mVs-1. PANI: polyaniline, GNS: graphene nanosheet.

Fig. 2. Cyclic voltammetry curves of the prepared composites with dif-
ferent weight ratios of aniline at a scan rate of 10 mVs-1. PANI: polyaniline, 
GNS: graphene nanosheet.
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