DOI QR코드

DOI QR Code

Improvement of Signal-to-Noise Ratio for Speech under Noisy Environment

잡음환경 하에서의 음성의 SNR 개선

  • Received : 2013.03.12
  • Accepted : 2013.05.13
  • Published : 2013.07.31

Abstract

This paper proposes an improvement algorithm of signal-to-noise ratios (SNRs) for speech signals under noisy environments. The proposed algorithm first estimates the SNRs in a low SNR, mid SNR and high SNR areas, in order to improve the SNRs in the speech signal from background noise, such as white noise and car noise. Thereafter, this algorithm subtracts the noise signal from the noisy speech signal at each bands using a spectrum sharpening method. In the experiment, good signal-to-noise ratios (SNR) are obtained for white noise and car noise compared with a conventional spectral subtraction method. From the experiment results, the maximal improvement in the output SNR results was approximately 4.2 dB and 3.7 dB better for white noise and car noise compared with the results of the spectral subtraction method, in the background noisy environment, respectively.

본 논문에서는 잡음 환경 하에서 음성신호에 대한 신호대잡음비(SNR)를 개선하기 위한 알고리즘을 제안한다. 본 논문에서 제안하는 알고리즘은 백색잡음 및 자동차잡음 등과 같은 배경잡음으로부터 음성신호의 SNR을 개선할 목적으로 먼저 저역, 중역, 고역 SNR 대역에서 SNR을 추정한다. 다음으로 본 알고리즘은 각 대역에서 스펙트럼을 강조함으로써 잡음으로 오염된 음성신호 속에서 잡음신호를 차감한다. 백색잡음, 자동차잡음에 의하여 오염된 음성에 대하여 본 논문에서 제안한 알고리즘이 스펙트럼 차감 방법과 비교하여 양호한 신호대잡음비 값을 구하였다. 실험결과로부터 스펙트럼 차감 방법과 비교하여 백색잡음에 대하여 최대 4.2 dB, 자동차잡음에 대하여 최대 3.7 dB의 출력 신호대잡음비가 개선된 것을 확인할 수 있었다.

Keywords

References

  1. S. Tamura and A. Waibel, "Noise reduction using connectionist models", Proc. ICASSP-88, Vol. 1, pp. 553-556, 1988.
  2. T. T. Le, J. S. Mason and T. Kitamura, "Characteristics of multi-layer perceptron models in enhancing degraded speech", Proc. ICSLP-94, pp. 1611-1614, 1994.
  3. J. S. Choi, "Speaker Recognition using LPC Cepstrum Coefficients and Neural Network", Journal of the Korea Institute of Information and Communication Engineering, Vol. 15, No. 12, pp. 2521-2526, December 2011. https://doi.org/10.6109/jkiice.2011.15.12.2521
  4. S. F. Boll, "Suppression of acoustic noise in speech using spectral subtraction", IEEE Trans. Acoust., Speech, Signal Processing, Vol. 27, No. 2, pp. 113-120, 1979. https://doi.org/10.1109/TASSP.1979.1163209
  5. J. S. Lim and A. V. Oppenheim, "Enhancement and Bandwidth Compression of Noisy Speech," Proc., IEEE, Vol. 67, DEC, 1979.
  6. L. J. Griffiths and C. W. Jim, "An alternative approach to linearly constrained adaptive beamforming," IEEE Trans. Antennas Propag, AP-30, 27-34, 1982.
  7. B. Widrow, R. John, J. R. Glover, J. M. McCool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler, E. Dong, R. C. Goodlin, "Adaptive noise cancelling: Principles and applications", Proc. IEEE, Vol. 63, No. 12, pp. 1692-1716, 1975. https://doi.org/10.1109/PROC.1975.10036
  8. A. A. M. Abushariah, T. S. Gunawan, O. O. Khalifa and M. A. M. Abushariah, "English digits speech recognition system based on Hidden Markov Models", 2010 International Conference on Computer and Communication Engineering, pp. 1-5, May 2010.
  9. L. Yang, L. Jing, Y. Yuxiang and W. Jian, "Improvement algorithm of DTW on isolated-word recognition", 2011 IEEE International Conference on Computer Science and Automation Engineering, Vol. 3, pp. 319-322, 2011.
  10. J. S. Lim, "Speech Enhancement", Prentice-Hall, Inc., Englewood Cliffs, N. J., 1983.
  11. H. Hirsch and D. Pearce, "The AURORA experimental framework for the performance evaluations of speech recognition systems under noisy conditions", in Proc. ISCA ITRW ASR2000 on Automatic Speech Recognition: Challenges for the Next Millennium, Paris, France, 2000.

Cited by

  1. A Mobile Stress Management System utilizing Variable Voice Information According to the Wearing Area vol.22, pp.6, 2013, https://doi.org/10.9708/jksci.2017.22.06.095