DOI QR코드

DOI QR Code

Design of Network-adaptive Transmission Architecture for Guaranteeing the Quality of Virtualization Service

가상화 서비스의 QoS 보장을 위한 네트워크 적응적인 전송 구조 설계

  • Kim, Sujeong (School of Electronics Engineering Kwangwoon University) ;
  • Ju, Kwangsung (School of Electronics Engineering Kwangwoon University) ;
  • Chung, Kwangsue (School of Electronics Engineering Kwangwoon University)
  • Received : 2013.05.13
  • Accepted : 2013.06.21
  • Published : 2013.07.31

Abstract

Virtualization service processes all operation including the data creation, storing, and disposal in a server and transmits processed data as the streaming media form. Therefore, client can use the same environment as the traditional desktop environment without considering the type of device. Virtualization service should consider not only the video quality but also the delay bounds and continuity of video playback for improving the user perceived Quality of Service(QoS) of streaming service. In this paper, we propose a network-adaptive transmission architecture that focuses on guaranteeing QoS requirements for virtualization service. In order to provide those, the proposed architecture have the transmission rate adaptation function based on available bandwidth and the content bit-rate control function based on sender buffer state. Through each function, proposed architecture guarantee the delay bounds and continuity of virtualization contents playback. The simulation results show that proposed network-adaptive transmission architecture provides a improve performance of throughput and transmission delay.

가상화 서비스는 데이터의 생성, 저장, 폐기 등의 모든 과정과 연산을 서버에서 처리하며, 클라이언트에게 스트리밍 미디어 형태로 전송한다. 따라서, 클라이언트는 단말의 타입에 구애받지 않고 기존 데스크톱 환경과 동일한 환경을 이용할 수 있다. 이러한 가상화 서비스의 사용자 체감 품질을 만족시키기 위해서는 영상 품질 이외에도 재생연속성과 재생지연한계를 고려해야 한다. 본 논문에서는 가상화 서비스의 QoS를 보장하기 위한 네트워크 상황에 적응적인 가상화 콘텐츠 전송 구조를 제안한다. 제안하는 가상화 콘텐츠 전송 구조는 네트워크의 가용 대역폭을 고려한 전송률 조절 기능과 송신 버퍼 상태를 고려한 콘텐츠 비트율 조절 기능이 있으며, 각 기능을 통해 가상화 콘텐츠의 재생지연한계와 가상화 콘텐츠의 재생 연속성을 보장한다. 실험을 통해 제안하는 가상화 콘텐츠 전송 구조가 패킷 손실률과 전송 지연 등의 측면에서 성능이 향상되는 것을 확인하였다.

Keywords

References

  1. T. Hobfeld, R. Schartz, M. Varela, and C. Timmerer, "Challenges of QoE Management for Cloud Applications," IEEE Communications Magazine, vol. 50, issue. 4, pp. 28-36, Apr. 2012.
  2. P. Simoens, F. Turk, B. Dhoedt, and P. Demeester, "Remote Display Solutions for Mobile Cloud Computing," Transactions of Computer, vol. 44, issue. 8, pp. 46-53, Aug. 2011.
  3. M. Tan and X. Su, "Media Cloud: When Media Revolution Meets Rise of Cloud Computing," in Proceeding of the IEEE 6th International Symposium on Service Oriented System Engineering, California: CA, pp. 251-261, 2011.
  4. S. Floyd, M. Handley, J. Padhye, and J. Windmer, "Equation-based Congestion Control for Unicast Applications," in Proceeding of the ACM SIGCOMM'00, New York: NY, pp. 43-56, 2000.
  5. A. Goel, C. Krasic, and J. Walpole, "Low-latency Adaptive Streaming over TCP," ACM Transactions on Multimedia Computing, Communications, and Applications, vol. 4, issue. 3, Aug. 2008.
  6. Y. Xiong, M. Wu, and W. Jia, "Delay Prediction for Real-Time Video Adaptive Transmission over TCP," Journal of Multimedia, vol. 5, no. 3, pp. 216-223, Jun. 2010.
  7. Jahon Koo and Kwangsue Chung, "Adaptive Rate Control for Guaranteeing the Delay Bounds of Streaming Service," Journal of KIISE : Information Networking, vol. 37, no. 6, pp. 483-488, Dec. 2010.
  8. Ukheon Jeong and Kwangsue Chung, "Adaptive Rate Control Scheme for Guaranteeing the Delay Bounds of Interactive Multimedia Service," in Proceeding of the KCC 2012, pp. 404- 406, 2012.
  9. NS-2 Simulator. Available: http://www.isi.edu/nsnam/ ns/.