DOI QR코드

DOI QR Code

Power Management Circuits for Self-Powered Systems Based on Solar Energy Harvesting

빛 에너지 하베스팅을 이용한 자가발전 시스템용 전력관리 회로

  • Yoon, Eun-Jung (Department of Electronics Engineering, Incheon National University) ;
  • Park, Jong-Tae (Department of Electronics Engineering, Incheon National University) ;
  • Yu, Chong-Gun (Department of Electronics Engineering, Incheon National University)
  • Received : 2013.02.19
  • Accepted : 2013.05.14
  • Published : 2013.07.31

Abstract

In this paper two types of power management circuits for solar energy harvesting self-powered systems are proposed. First, if the output voltage of a solar cell is enough to drive load, a power management unit(PMU) directly supplies load with solar energy. Second, if a solar cell outputs very low voltage less than 0.5V as in miniature solar cells or monolithic integrated solar cells such that it cannot directly power the load, a voltage booster is employed to step up the solar cell's output voltage, and then PMU delivers the boosted voltage to the load. The proposed power management systems are designed and fabricated in a $0.18{\mu}m$ CMOS process, and their performances are compared and analyzed through measurements.

본 논문에서는 빛 에너지 하베스팅 자가발전 시스템을 위한 두 가지 구조의 전력관리 회로를 제안한다. 첫 번째는, 솔라셀이 부하가 동작할 수 있는 충분한 전압을 출력하는 경우, 전력관리회로를 통해 직접 솔라셀의 에너지를 부하로 공급하는 구조이다. 두 번째는 초소형 솔라셀이나 집적화된 솔라셀에서처럼 출력전압이 0.5V 이하로 매우 작아서 부하를 직접 구동할 수 없는 경우, 전압부스터를 사용하여 충분한 전압까지 승압한 후, 이를 전력관리회로를 통해 부하로 공급하는 구조이다. 이 두 가지 구조의 전력관리 회로는 $0.18{\mu}m$ CMOS 공정으로 설계 및 제작되었으며, 측정을 통해 성능을 비교 분석하였다.

Keywords

References

  1. D. Dondi, et al,, "A solar energy harvesting circuit for low power applications," IEEE ICSET, pp. 945-949, 2008.
  2. J. Colomer-Farrarons, P. Miribel-Catala, A. Saiz-Vela, M. Puig-Vidal, and J. Samitier, "Power-Conditioning Circuitry for a Self-Powered System Based on Micro PZT Generators in a $0.13{\mu}m$ Low-Voltage Low-Power Technology," IEEE Trans. on Industrial Electronics, vol. 55, no. 9, pp. 3249-3257, September 2008. https://doi.org/10.1109/TIE.2008.927973
  3. J. Colomer, et al., "Novel autonomous low power VLSI system powered by ambient mechanical vibrations and solar cells for portable applications in a $0.13{\mu}$ technology," PESC, pp. 2786-2791, 2007.
  4. J. Colomer, et al., "SiP Power Management Unit with Embedded Temperature Sensor Powered by Piezoelectric Vibration Energy Harvesting," IEEE MWSCAS, pp. 662-665, 2007.
  5. I. Doms, et al., "Capacitive Power Management Circuit for Micropower Thermoelectric Generators With a 1.4 uA Controller," IEEE JSSC, vol. 44 , no. 10, pp. 2824-2833, 2009.
  6. D. Dondi, et al., "Modeling and optimization of a solar energy harvester system for self-powered wireless sensor networks," IEEE Trans. on Industrial Electronics, pp. 2759-2766, 2008.
  7. H. Shao, C. Tsui, and W. Ki, "The Design of a Micro Power Management System for Applications Using Photovoltaic Cells With the Maximum Output Power Control," IEEE Trans. on VLSI Systems, vol.17, no.8, pp. 1138-1142, 2009. https://doi.org/10.1109/TVLSI.2008.2001083
  8. M. Ferri, D. Pinna, E. Dallago, and P. Malcovati, "Integrated micro-solar cell structures for harvesting supplied microsystems in $0.35-{\mu}m$CMOS technology," ICSENS, pp. 542-545, 2009.
  9. E. Méndez-Delgado, G. Serranoy and E. I. Ortiz-Rivera, "Monolithic integrated solar energy harvesting system", 35th IEEE PVSC, pp. 2833-2838, 2010.
  10. http://www.solarbotics.com

Cited by

  1. A Study on Energy Harvesting during Pulldown Exercises using a Health Care Machine vol.65, pp.2, 2016, https://doi.org/10.5370/KIEEP.2016.65.2.084
  2. Assessment of Structural Performance and Integrity for Vibration-based Energy Harvester in Frequency Domain vol.9, pp.2, 2013, https://doi.org/10.3390/electronics9020357