DOI QR코드

DOI QR Code

전자소자로의 응용을 위한 CNT/PVDF 복합막에서 CNT 조성에 의한 정전용량과 출력전류 제어

Capacitance and Output Current Control by CNT Concentration in the CNT/PVDF Composite Films for Electronic Devices

  • Lee, Sunwoo (Dept. of Electric Information, Inha Technical College) ;
  • No, Im-Jun (Dept. of Electrical and Electronic Engineering, Inha University) ;
  • Shin, Paik-Kyun (Dept. of Electrical and Electronic Engineering, Inha University) ;
  • Kim, Yongjin (Dept. of Electric Information, Inha Technical College)
  • 투고 : 2013.01.31
  • 심사 : 2013.07.29
  • 발행 : 2013.08.01

초록

The carbon nanotube/poly-vinylidene fluoride (CNT/PVDF) composite films for the use of electronic devices were fabricated by spray coating method using the CNT/PVDF solution, which was prepared by adding PVDF pellets into the CNT dispersed N-Methyl-2-pyrroli-done (NMP) solution. The CNT/PVDF composite films were peeled off from the glass substrate and were investigated by the scanning electron microscopy, which revealed that the CNTs were uniformly dispersed in the PVDF films and thickness of the films were approximately $20{\mu}m$. The capacitance of the CNT/PVDF films increased dramatically by adding CNTs into the PVDF matrix, and finally saturated approximately 1880 pF. However, the I-V curves didn't show any saturation effect in the CNT concentration range of 0 ~ 0.04 wt%. Therefore we can control the performance of the devices from the CNT/PVDF composite film by adjusting the current level resulted from the CNT concentration with the uniform capacitance value.

키워드

참고문헌

  1. W. J. Yu, S. H. Chae, S. Y. Lee, D. L. Duong and Y. H. Lee, "Ultra-Transparent, Flexible Single-walled Carbon Nanotube Non-volatile Memory Device with an Oxygen-decorated Graphene Electrode", Adv. Mater., vol. 23, pp. 1889-1893, 2011. https://doi.org/10.1002/adma.201004444
  2. Y. H. Kim, J. S. Heo, T. H. Kim, S. J. Park, M. H. Yoon, J. W. Kim, M. S. Oh, G. R. Yi, Y. Y. Noh and S. K. Park, "Flexible metal-oxide devices made by room temperature photochemical activation of sol-gel films", Nature, vol. 489, pp. 128-133, 2012. https://doi.org/10.1038/nature11434
  3. K. A. Sierros, D. S. Hecht, D. A. Banerjee, N. J. Morris, L. Hu, G. C. Irvin, R. S. Lee, D. R. Cairns, "Durable transparent carbon nanotube films for flexible device components", Thin Solid Films, vol. 518, pp. 6977-6983, 2010. https://doi.org/10.1016/j.tsf.2010.07.026
  4. T. Minami, "Transparent conducting oxide semiconductors for transparent electrodes", Semicond. Sci. Technol., vol. 20, pp. S35-S44, 2005. https://doi.org/10.1088/0268-1242/20/4/004
  5. R. M. Krishna, T. C. Hayes, D. Krementz, G. Weeks, A. M. Torres, K. Brinkman, and K. C. Mandal, "Characterization of transparent conducting oxide thin films deposited on ceramic substrates", Materials Letters, vol. 66, pp. 233-235, 2012. https://doi.org/10.1016/j.matlet.2011.08.066
  6. D. Kumar and R. C. Sharma, "ADVANCES IN CONDUCTIVE POLYMERS", Eur. Polym. J., vol. 34, No. 8, pp. 1053-1060, 1998. https://doi.org/10.1016/S0014-3057(97)00204-8
  7. A. D. Bendrea, L. Cianga and I. Cianga, "Review pater: Progress in the Field of Conducting Polymers for Tissue Engineering Applications", Journal of biomaterials applications, vol. 26, pp. 3-84, 2013.
  8. W. Ma, J. Zhang, S. Chen, and X. Wang, "Crystalline Phase Formation of Poly(vinylidene fluoride) from Tetrahydrofuran/N,N‐dimethylformamide Mixed Solutions", J. Macromol. Sci. Phys., vol. B47, No. 3, pp. 434-449, 2008.
  9. V. Sencadas, S. Lanceros-Mendez and J. F. Mano, "Characterization of poled and non-poled $\beta$-PVDF films using thermal analysis techniques", Thermochimica Acta, vol. 424, pp. 201-207, 2004. https://doi.org/10.1016/j.tca.2004.06.006
  10. V. Eswaraiah, V. Sankaranarayanan and S. Ramaprabhu, "Functionalized Graphene-PVDF Foam Composites for EMI Shielding", Macromol. Mater. Eng., vol. 296, pp. 894-898, 2011. https://doi.org/10.1002/mame.201100035
  11. S. A. C. Carabineiro, M. F. R. Pereira, J. N. Pereira, C. Caparros, V. Sencadas and S. Lanceros-Mendez, "Effect of the carbon nanotube surface characteristics on the conductivity and dielectric constant of carbon nanotube/poly(vinylidenefluoride) composites", Nanoscale Research Letters, vol. 6, pp. 1-5, 2011.
  12. E. El Shafee, M. El Gamal and M. Isa, "Electrical properties of multi walled carbon nanotubes/poly (vinylidene fluoride/trifluoroethylene)nanocomposites", J. Polym. Res., vol. 19, pp. 1-8, 2012. https://doi.org/10.1007/s10965-012-0001-8
  13. K. Balasubramanian and M. Burghard, "Chemically Functionalized Carbon Nanotubes", Small, vol. 1, No. 2, pp. 180-192, 2005. https://doi.org/10.1002/smll.200400118
  14. R. Khare and S. Bose, "Carbon Nanotube Based Composites-A Review", Journal of Minerals & Materials Characterization & Engineering, vol. 4, No. 1, pp. 31-46, 2005. https://doi.org/10.4236/jmmce.2005.41004
  15. M. Yoo, C. W. Frank, S. Mori, S. Yamaguchi, "Effect of poly(vinylidene fluoride)binder crystallinity and graphite structure on the mechanical strength of the composite anode in a lithium ion battery", Polymer, vol. 44, pp. 4197-4204, 2003. https://doi.org/10.1016/S0032-3861(03)00364-1
  16. J. K. Yuan, W. L. Li, S. H. Yao, Y. Q. Lin, A. Sylvestre and J. Bai, "High dielectric permittivity and low percolation threshold in polymer composites based on SiC-carbon nanotubes micro/nano hybrid", Appl. Phys. Lett., vol. 98, pp. 032901, 2011. https://doi.org/10.1063/1.3544942
  17. M. Panda, V. Srinivas and A. K. Thakur, "On the question of percolation threshold in polyvinylidene fluoride/nanocrystalline nickel composites", Appl. Phys. Lett., vol. 92, pp. 132905, 2008. https://doi.org/10.1063/1.2900710
  18. L. Wang and Z. M. Dang, "Carbon nanotube composites with high dielectric constant at low percolation threshold", Appl. Phys. Lett., vol. 87, pp. 042903, 2005. https://doi.org/10.1063/1.1996842
  19. L. Pezze, M. Robert-de-Saint-Vincent, T. Bourdel, J-P Brantut, B Allard, T Plisson, A Aspect, P Bouyer and L Sanchez-Palencia, "Regimes of classical transport of cold gases in a two-dimensional anisotropic disorder", New J. Phys., vol. 13, pp. 095015, 2011. https://doi.org/10.1088/1367-2630/13/9/095015