DOI QR코드

DOI QR Code

A Study on Antibacteria of Hydroxyapatite Filter

하이드록시아파타이트 필터의 항균성에 관한 연구

  • Ha, Ji Hye (Department of Nanofusion Engineering, Pusan National University) ;
  • Lee, Seung Hyun (Department of Nanofusion Engineering, Pusan National University) ;
  • Ryu, Su Chak (Department of Nanofusion Engineering, Pusan National University)
  • 하지혜 (부산대학교 나노응용공학과) ;
  • 이승현 (부산대학교 나노응용공학과) ;
  • 류수착 (부산대학교 나노응용공학과)
  • Received : 2013.04.01
  • Accepted : 2013.07.27
  • Published : 2013.07.31

Abstract

A hydroxyapatite air filter was made with hydroxyapatite powder, water and chitosan solution. The structures of the sintered HAp samples were determined by MP-XRD. Hydroxyapatite has antibacteria properties against Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli. The bacteria removal rate was 99.9%. In the case of Pseudomonas aeruginosa, Colon bacterium and Listeria monocytogenes, the hydroxyapatite air filters had a clear zone which confirmed antibacteria properties. Using the microscopy, we observed that the HAp powder absorbed E. coli bacteria.

Keywords

References

  1. I. Orly, M. Gregoire, J. Menanteau, M. Heughebaert, and B. Kerebel, "Chemical Changes in Hydroxyapatite Biomaterial Underin Vivo Andin Vitro Biological Conditions," Calcif. Tissue Int., 45 [1] 20-26 (1989). https://doi.org/10.1007/BF02556656
  2. A. Fritsch, L. Dormieux, C. Hellmich, and J. Sanahuja, "Mechanical Behavior of Hydroxyapatite Biomaterials: An Experimentally Validated Micromechanical Model for Elasticity and Strength," J. Biomed. Mater. Res., Part A, 88 [1] 149-61 (2009).
  3. A. Fritsch, L. Dormieux, C. Hellmich, and J. Sanahuja, "Micromechanics of Crystal Interfaces in Plycrystalline Slid Pases of Prous Media: Fundamentals and Application to Strength of Hydroxyapatite Biomaterials," J. Mater. Sci., 42 [21] 8824-37 (2007). https://doi.org/10.1007/s10853-007-1859-4
  4. M. J. Gorbunoff, "The Interaction of Proteins with Hydroxyapatite: I. Role of Protein Charge and Structure," Anal. Biochem., 136 [2] 425-32 (1984). https://doi.org/10.1016/0003-2697(84)90239-2
  5. G. Yin, Z. Liu, J. Zhan, F. Ding, and N. Yuan, "Impacts of the Surface Charge Property on Protein Adsorption on Hydroxyapatite," Chem. Eng. J., 87 [2] 181-86 (2002). https://doi.org/10.1016/S1385-8947(01)00248-0
  6. S. Tsuru, N. Shinomiya, Y. Katsura, Y. Uwabe, M. Noritake, and M. Rokutanda, "Adsorption and Preparation of Human Viruses Using Hydroxyapatite Column," Bio-Med. Mater. Eng., 1 [3] 143-47 (1991).
  7. E. C. Reynolds and A. Wong, "Effect of Adsorbed Protein on Hydroxyapatite Zeta Potential and Streptococcus Mutans Adherence," Infect. Immun., 39 [3] 1285-90 (1983).
  8. M. J. Gorbunoff, "The Interaction of Proteins with Hydroxyapatite: II. Role of Acidic and Basic Groups," Anal. Biochem., 13 [2] 433-39 (1984).
  9. F. Korkusuz and O. Uluoglu, "Non-specific Inflammation and Bone Marrow Depletion due to Intramedullary Porous Hydroxyapatite Application," Bull. Hosp. Jt. Dis., 58 [2] 86-91 (1999).
  10. E. D. Berry and G. R. Siragusa, "Integration of Hydroxyapatite Concentration of Bacteria and Seminested PCR to Enhance Detection of Salmonella Typhimurium from Ground Beef and Bovine Carcass Sponge Samples," J. Rapid Methods Autom. Microbiol., 7 [1] 7-23 (1999). https://doi.org/10.1111/j.1745-4581.1999.tb00411.x
  11. E. D. Berry and G. R. Siragusa, "Hydroxyapatite Adherence as a Means to Concentrate Bacteria," Appl. Environ. Microbiol., 63 [10] 4069-74 (1997).
  12. M. Wakamura, K. Hashimoto, and T. Watanabe, "Photocatalysis by Calcium Hydroxyapatite Modified with Ti (IV): Albumin Decomposition and Bactericidal Effect," Langmuir, 19 [8] 3428-31 (2003). https://doi.org/10.1021/la0208169
  13. W. Zhang, B. Rittmann, and Y. Chen, "Size Effects on Adsorption of Hematite Nanoparticles on E. Coli Cells," Environ. Sci. Technol., 45 [6] 2172-78 (2011). https://doi.org/10.1021/es103376y
  14. M. Jelinek, T. Kocourek, K. Jurek, J. Remsa, J. Mikovsk, M. Weiserova, J. Strnad, and T. Luxbacher, "Antibacterial Properties of Ag-doped Hydroxyapatite Layers Prepared by PLD Method," Appl. Phys. A, 101 [4] 615-20 (2010). https://doi.org/10.1007/s00339-010-5911-x
  15. A. Adout S. Kang, A. Asatekin, A. M. Mayes, and M. Elimelech, "Ultrafiltration Membranes Incorporating Amphiphilic Comb Copolymer Additives Prevent Irreversible Adhesion of Bacteria," Environ. Sci. Technol., 44 [7] 2406-11 (2010). https://doi.org/10.1021/es902908g
  16. C. Liu, D. Yang, Y. Wang, J. Shi, and Z. Jiang, "Fabrication of Antimicrobial Bacterial Cellulose-Ag/AgCl Nanocomposite Using Bacteria as Versatile Biofactory," J. Nanopart. Res., 14 [8] 1-12 (2012).
  17. A. E. Herr, J. I. Molho, J. G. Santiago, M. G. Mungal, and T. W. Kenny, "Electroosmotic Capillary Flow with Nonuniform Zeta Potential," Anal. Chem., 72 [5] 1053-57 (2000). https://doi.org/10.1021/ac990489i
  18. T. M. Riddick, "Control of Colloid Stability Through Zeta Potential," pp. 1-3, Wynnewood, Pa., Livingston, 1968.
  19. M. Elimelech, W. H. Chen, and J. J. Waypa. "Measuring the Zeta (electrokinetic) Potential of Reverse Osmosis Membranes by a Streaming Potential Analyzer," Desalination 95 [3] 269-86 (1994). https://doi.org/10.1016/0011-9164(94)00064-6
  20. W. Jakubowski, A. Slosarczyk, Z. Paszkiewicz, W. Szymanski, and B. Walkowiak, "Bacterial Colonisation of Bioceramic Surfaces," Adv. Appl. Ceram., 107 [4] 217-21 (2008 https://doi.org/10.1179/174367608X263395