DOI QR코드

DOI QR Code

The Effect of Electron Beam Irradiation on Chemical and Morphological Properties of Hansan Ramie Fibers

  • Lee, Jung Soon (Dept. of Clothing and Textiles, Chungnam National University)
  • Received : 2012.11.16
  • Accepted : 2013.04.20
  • Published : 2013.06.30

Abstract

The purpose of this study investigates the effects of electron beam(EB) irradiation on the chemical and morphological properties of Hansan ramie fiber. Hansan ramie fibers were irradiated with electron beam doses of 0, 1, 3, 5 and 10kGy. The effect of electron beam irradiation on the chemical components of fibers as well as the surface chemical and morphological properties were investigated using chemical component analysis methods based on TAPPI standards, XPS, and SEM. The results indicate that the surface layers can be removed under suitable EB irradiation doses. Alcohol-benzene extraction and lignin content increases gradually with an increase in EB irradiation and reaching a maximum at an EB dose of 3kGy, and decreases at 10kGy. The surface chemical changes measured by XPS corresponded to the chemical composition analysis results. The C1 peak and the O/C ratio decreased with the removal of the multi-layer and primary layer by EB irradiation. The SEM images show the inter-fibrillar structure etched by EB irradiation up to 5kGy. At 10kGy, the surface structure of the ramie fiber shows highly aligned and distinctive striations in a longitudinal direction. The removal of these exterior layers of the fiber was confirmed by changes in surface morphology as observed in SEM images.

Keywords

References

  1. Aranberri-Askargorta, I., Lampke, T., & Bismarck, A. (2003). Wetting behavior of flax fibers as reinforcement for polypropylene. Journal of Colloid and Interface Science, 263(2), 580-589. https://doi.org/10.1016/S0021-9797(03)00294-7
  2. Belgacem, M. N., Czeremuszkin, G., Sapleha, S., & Gandini, A. (1995). Surface characterization of cellulose fibers by XPS and inverse gas chromatography. Cellulose, 2(3), 145-157. https://doi.org/10.1007/BF00813015
  3. Choi, H. Y., Han, S. O., & Lee, J. S. (2009). The effects of surface and pore characteristics of natural fiber on interfacial adhesion of henequen fiber/PP biocomposites. Composite Interfaces, 16(4), 359-376. https://doi.org/10.1163/156855409X450873
  4. Choi, H. Y., Han, S. O., & Lee, J. S. (2008). Surface morphological, mechanical and thermal characterization of electron beam irradiated fibers. Applied Surface Science, 255, 2466-2473. https://doi.org/10.1016/j.apsusc.2008.07.171
  5. Halina, K., & Dagmara, O. (2006). The effect of UV-irradiation on composting of polyethylene modified by cellulose. Polymer Degraddation and Stability, 91(10), 2282-2291. https://doi.org/10.1016/j.polymdegradstab.2006.04.024
  6. Halina, K., Dagmara, O., Przemystaw, M., & Hanna, C. (2005). Effect of short wavelength UV-irradiation on ageing of polypropylene/ cellulosic compositions. Polymer Degradation and Stability, 88(2), 189-198. https://doi.org/10.1016/j.polymdegradstab.2004.04.017
  7. Hong, J. M., & Ryu, H. S. (1997). Mechanical properties and fabric handle of Hansan ramie(Part 1). Journal of the Korean Society of Clothing and Textiles, 21(8), 1315-1322.
  8. Han, S. O., Seo, Y. B., & Lee, C. H. (2007). Degradation of cellulosic fibers by electron beam irradiation. Journal of Korea Technical Association of the Pulp and Paper Industry, 39(5), 20-25.
  9. Han, S. O., Cho, D., Park, W. H., & Lawrence, D. (2006). Henequen/ poly(butylen-es succinate) biocomposites: electron beam irradiation effects on henequen fiber and the interfacial properties of biocomposites. Composite interfaces, 13(2), 231-247. https://doi.org/10.1163/156855406775997123
  10. Iller, E., Kykielka, A., Stupinska, H., & Mikolajczyk, W. (2002). Electron-beam stimulation of the reactivity of cellulose pulps for production of derivatives. Radiation Physics and Chemistry, 63(3), 253-257. https://doi.org/10.1016/S0969-806X(01)00646-6
  11. Johansson, L. (2002). Monitoring fibre surfaces with XPS in papermaking processe. Microchimica Acta, 138(3-4), 217-223. https://doi.org/10.1007/s006040200025
  12. Johansson, L. S., Campbell, J. M., Krista, K., & Per, S. (1999). Evaluation of surface lignin on cellulose fibers with XPS. Applied Surface Science, 144-145, 92-95. https://doi.org/10.1016/S0169-4332(98)00920-9
  13. Juan, C. B., Richard, V., Joel, P., Richard, G., Stefan, Z., & Jogn, F. K. (2005). Chemical force microscopy of cellulosic fiber. Carbohydrate Polymers, 62(4), 369-378. https://doi.org/10.1016/j.carbpol.2005.08.058
  14. Khan, M. A., Haque, N., Al-Kafi, A., Alam, M. N., & Abedin, M. Z. (2006). Jute reinforced polymer composite by gamma radiation: effect of surface treatment with UV radiation. Polymer Plastics Technology and Engineering, 45(5), 607-613. https://doi.org/10.1080/03602550600554141
  15. Klemm, D., Philips, B., Heinze, T., Hinze, U., & Wagenknecht, W. (1998). Fundamentals and Analytical Methods, Volume 1, Comprehensive cellulose chemistry(1st ed). New York: Wiley-VCH.
  16. Koljonen, K., Osterberg, M., Johansson, L. S., & Stenius, P. (2003). Surface chemistry and morphology of different mechanical pulps determined by ESCA and AFM. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 228(1/3), 143-158. https://doi.org/10.1016/S0927-7757(03)00305-4
  17. Lee, S. G., Choi, S. S., Park, W. G., & Cho, D. (2003). Characterization of surface modified flax fibers and their biocompoistes with PHB. Macromolecular Symposia, 197(1), 89-99. https://doi.org/10.1002/masy.200350709
  18. Mohanty, A. K., Misra, M., & Hinrichsen, G. (2000). Biofibers, biodegradable polymers and biocomposite; An overview. Macromolecular Materials and Engineering, 276/277(1), 1-24. https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W
  19. Na, Y. J., & Kim, H. W. (2012). Sensibility preference of eco-friendly fabric products and trust reliability. Journal of the Korean Society for Clothing Industry, 14(3), 430-437. https://doi.org/10.5805/KSCI.2012.14.3.430
  20. Nevell, T. P., & Zeronian, S. H. (1985). Cellulose chemistry and its applications (First ed.). New York: John Wiley & Sons.
  21. Oh, S. Y., Yoo, D. I., Shin, Y., Kim, H. C., Chung, Y. S., Park, W. H., & Youk, J. H. (2005). Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of Xray diffraction and FT-IR spectroscopy. Carbohydrate Research, 340(15), 2376-2391. https://doi.org/10.1016/j.carres.2005.08.007
  22. Sgriccia, N., Hawley, M. C., & Misra, M. (2008). Characterization of natural fiber surfaces and natural fiber composites. Composites: Part A., 39(10), 1632-1637. https://doi.org/10.1016/j.compositesa.2008.07.007
  23. Takacs, E., Wojnarovits, L., Borsa, J., Foldvary, C., Hargittai, P., & Zold, O. (1999). Effect of a-irradiation on cotton-cellulose. Radiation Physics and Chemistry, 55(5/6), 663-666. https://doi.org/10.1016/S0969-806X(99)00245-5
  24. Laine, J., Stenius, P., Carlsson, G., & Ström, G. (1994). Surface characterization of unbleached kraft pulps by means of ESCA. Cellulose, 1(2), 145-160. https://doi.org/10.1007/BF00819664
  25. Yuan, X., Jayaraman, K., & Bhattacharyya, D. (2004). Mechanical properties of plasma-treated sisal fibre-reinforced polypropylene composite. Journal of Adhesion Science and Technology, 18(9), 1027-1045. https://doi.org/10.1163/1568561041257478

Cited by

  1. Increased solubility of plant core pulp cellulose for regenerated hydrogels through electron beam irradiation vol.25, pp.9, 2018, https://doi.org/10.1007/s10570-018-1933-x