DOI QR코드

DOI QR Code

An Effective Method of Testing Application Software of Smart Sensors

스마트 센서 응용 소프트웨어를 테스팅하기 위한 효율적인 방법

  • 조장우 (동아대학교 컴퓨터공학과) ;
  • 정환철 (동아대학교 컴퓨터공학과)
  • Received : 2013.07.17
  • Accepted : 2013.08.14
  • Published : 2013.08.30

Abstract

This paper presents a virtual sensor system that is an effective method to test application software of smart sensors. The common way of testing sensor application is to build a test board, connect sensors to the board, and test sensor applications on the board with sensor's measurements as inputs. The problem of testing sensor application software with sensor's measurements as inputs is the restriction of test data. In other words, software testers cannot manipulate test data, because test data is generated by sensors. To solve this problem a virtual sensor system is presented in this paper. The virtual sensor system enables software testers to manipulate measurements of sensors. In the virtual sensor system, generation of virtual sensors comprises three stages - sensor selection, sensor characterization, and determination of output patterns. Sensor's measurements that can be manipulated through the virtual sensor system make the process of testing efficient. To show the usefulness of our virtual sensor system, it is applied to sensor applications in Android platform and the result of experiments is shown.

본 논문에서는 스마트 센서 응용 소프트웨어를 테스팅하기 위한 효율적인 방법인 가상 센서 시스템을 제안한다. 센서 응용 소프트웨어를 테스트하는 보편적인 방법은 테스트 보드에 센서를 직접 연결시켜 테스팅 환경의 센서 측정값으로 응용소프트웨어를 테스팅 하는 것이다. 센서 측정값을 입력으로 센서 응용 소프트웨어를 테스팅함으로 발생하는 문제는 테스트 데이터가 제한적이라는 것이다. 즉, 테스트 데이터가 센서로부터 생성되기 때문에 소프트웨어 테스터가 테스트 데이터를 조절하지 못하는 문제가 있다. 이러한 문제를 해결하기 위해 가상센서 시스템을 제안한다. 가상 센서 시스템은 소프트웨어 테스터가 센서의 측정값을 조절할 수 있게 한다. 가상 센서 시스템에서 센서 선택, 센서 특성화, 출력 패턴 정의의 세 단계를 통해 가상 센서를 정의한다. 가상 센서 시스템을 통해 조절 가능한 센서 측정값을 사용함으로써 센서 응용 소프트웨어에 대한 효율적인 테스트가 가능하다. 본 연구의 유용성을 보이기 위해 가상 센서 시스템을 안드로이드 앱의 센서 프로그램에 적용해 보고 실험 결과를 보인다.

Keywords

References

  1. Namki Min, "Introduction to Sensor Technology", Dongil press, pp 11-14, 2013
  2. A. Feng, et. al, "Embedded system for sensor communication and security", IET Information Security, Vol. 6, No. 2, pp 111-121, Jun. 2012. https://doi.org/10.1049/iet-ifs.2010.0073
  3. H. Ramamurthy, et. al, "Wireless Industrial Monitoring and Control Using a Smart Sensor Platform", IEEE SENSORS JOURNAL, Vol. 7, No. 5, pp 611-618, May. 2007. https://doi.org/10.1109/JSEN.2007.894135
  4. M. H. Salah, et. al, "A smart multiple-loop automotive cooling system - model, control, and experimental study", IEEE/ASME Trans. Mechatronics, Vol. 15, No. 1, pp 117-124, Jan. 2010. https://doi.org/10.1109/TMECH.2009.2019723
  5. T. Bein and D. Mayer, "Smart Sensor Networks for Structural Health Monitoring", Advanced Microsystems for Automotive Applications 2013, Springer International Publishing, pp 385-394,2013.
  6. M. E. Cater, T. O'Reilly, "Promoting interoperable ocean sensors the smart ocean sensors consortium", Proc. OCEANS 2009, MTS/IEEE Biloxi - Marine Technology for Our Future, pp 1-6, Oct. 2009.
  7. L. Ghelardoni, et. al., "Smart underwater wireless sensor networks", 2012 IEEE 27th Convention of Electrical & Electronics Engineers in Israel, pp 1-5, Nov. 2012.
  8. S. H. Choo and H. S. Seo, "Sensor-based Alert System applying Expert System for Performance Improvement", Journal of the Korea Society of Computer and Information, Vol. 17, No. 10, pp 1-9, Nov. 2012. https://doi.org/10.9708/jksci/2012.17.10.001
  9. M. Rusu, et. al, "Distributed e-health system with smart self-care units", Proc. IEEE Fifth Int. Conf. on Intelligent Computer Communication and Processing, pp 307-314, Aug. 2009.
  10. M. M. Baig and H. Gholamhosseini, "Smart Health Monitoring Systems: An Overview of Design and Modeling", Journal of Medical Systems, Vol. 37, (on-line) Jan. 2013.
  11. S. Y. Shin and Y. W. Lee, "Enhancement of Sleep Environment Using Sensor and User Information", Journal of the Korea Society of Computer and Information, Vol. 16, No. 1, pp 47-52, Jan. 2011. https://doi.org/10.9708/jksci.2011.16.1.047
  12. Soonil Cha, "Status and prospective of SW testing industry", Communications of KIISE, Vol. 28, No. 11, pp 76-84, Nov. 2010.
  13. C. Kameshwaran, "Software Testing", Prentice -Hall, pp 5-8, 2012.
  14. P. McMinn, "Search-based software test data generation: a survey", Software Testing, Verification and Reliability, Vol. 14, No. 2, pp 105-156, May. 2004. https://doi.org/10.1002/stvr.294
  15. Bixin Li, et. al., "Automatic test case selection for regression testing of composite service based on extensible BPEL flow graph", Journal of Systems and Software, Vol. 85, No. 6, pp 1300-1324, Jun. 2012. https://doi.org/10.1016/j.jss.2012.01.036
  16. Sangwoon Kim et. al., "Survey of System testing environment of embedded SW and testing technology", Communications of KIISE, Vol. 31, No. 5, pp 63-72, May. 2013.
  17. DDMS, http://developer.android.com/tools/ debugging/ddms.html
  18. monkeyrunner, http://developer.android.com/ tools/help/monkeyrunner_concepts.html
  19. Overview of Android Sensors, http://developer .android.com/guide/topics/sensors/sensors_over view.html