DOI QR코드

DOI QR Code

Electrical properties of nanoscale junctionless p-channel MuGFET at cryogenic temperature

극저온에서 나노스케일 무접합 p-채널 다중 게이트 FET의 전기적 특성

  • Lee, Seung-Min (Department of Electronics Engineering, Incheon National University) ;
  • Park, Jong-Tae (Department of Electronics Engineering, Incheon National University)
  • Received : 2013.04.05
  • Accepted : 2013.05.21
  • Published : 2013.08.31

Abstract

In this paper, the electrical properties of nanoscale junctionless p-channel MuGFET at cryogenic temperature have been analyzed experimentally. The experiment was performed using a cryogenic probe station which uses the liquid Helium. It has been observed that the drain current oscillation at low drain voltage and cryogenic temperature was more pronounced in junctionless transistor than in accumulation mode transistor. The reason for more marked oscillation is due to the smaller electrical cross section area of the inversion channel which is formed at the center of silicon film in junctionless transistor. It was also observed that the drain current and maximum transconductance were increased as the measurement temperature increased. This is resulted from the increase of hole mobility and the decrease of the threshold voltage as the measurement temperature increases. The drain current oscillation due to the quantum effects can be occurred up to the room temperature when the device size scales down to the nanometer level.

본 연구에서는 극저온에서 다중 게이트 구조인 나노스케일 p-채널 무접합(junctionless) 과 축적모드(accumulation mode) 다중 게이트 FET의 전기적 특성을 분석하였다. 헬륨을 사용하는 극저온 프로브 스테이션을 사용하여 소자를 측정하였다. 극저온과 낮은 드레인 전압에서 무접합 트랜지스터의 드레인 전류의 진동 현상이 축적모드 보다 심한 것을 알 수 있었다. 이는 무접합 트랜지스터에서는 채널이 실리콘 박막의 가운데 형성되므로 전기적 채널 폭이 축적모드 트랜지스터 보다 작기 때문이다. 온도가 증가할수록 드레인 전류가 증가하며 최대 전달 컨덕턴스도 증가하는 것을 알 수 있었다. 이는 온도가 증가할수록 문턱전압이 감소하며 이동도가 증가하는 데서 기인된 것을 알 수 있었다. 소자의 크기가 나노미터 레벨로 축소되면 양자현상에 의한 드레인 전류 진동이 상온에도 일어날 수 있다.

Keywords

References

  1. J. T. Park and J. P. Colinge "Mutiple-gate SOI MOSFETs: Device design guidelines," IEEE Trans. Electron Devices, vol. 49, no.12, pp2222-2229, 2002. https://doi.org/10.1109/TED.2002.805634
  2. J. P. Colinge, C. W. Lee, A. Afzalian, N. Kelleher, B. McCarthy, and R. Murphy, "Nanowire transistors without junction," Nature Nano- technology, vol. 5, no.3, pp. 225-229, 2010. https://doi.org/10.1038/nnano.2010.15
  3. C. W. Lee, A. Borne, I. Ferain, A. Afzalian, R. Yan, N. D. Akhavan, P. Razavi and J. P. Colinge, "High- temperature performance of silicon junctionless MOSFETs," IEEE Trans. Electron Devices, vol. 57, no.3, pp.620-625, 2010. https://doi.org/10.1109/TED.2009.2039093
  4. J.P. Colinge, A.J. Quinn, L. Floyd, G. Redmond, J.C. Alderman, W. Xiong, C.R. Cleavelin, T. Schulz, K. Schruefer, G. Knoblinger, and P. Patruno, "Low temperature electron mobility in Trigate SOI MOSFETs," IEEE Electron Device Letter, vol.27, no.2, pp.120-122, 2006. https://doi.org/10.1109/LED.2005.862691
  5. J.P. Colinge, W. Xiong, C.R. Cleavelin, T. Schulz, K. Schrufer, K. Matthew, and P. Patruno, "Room temperature low dimensional effects in Pi-gate SOI MOSFETs," IEEE Electron Device Letter, vol.27, no.9, pp.775-777, 2006. https://doi.org/10.1109/LED.2006.881086
  6. J. T. Park, J.Y. Kim, C.W. Lee, and J.P. Colinge, "Low temperature conductance oscillation in junctionless nanowire transistors," Applied Physics Letters, vol.97, P.172101, 2010. https://doi.org/10.1063/1.3506899
  7. F. Gaensslen, V. Rideout, E. Walker, and J. Walker, "Very small MOSFET's for low temperature operation," IEEE Trans. Electron Devices, vol. 24, no.3, pp.218-229, 1977. https://doi.org/10.1109/T-ED.1977.18712
  8. M. Souza, M.A. Pavanello, R.D. trevisoli, R.T. Doria, and J.P. Colinge, "Cryogenic operation of junctionless nanowire transistors," IEEE Electron Device Letter, vol.32, no.10, pp.1322-1324, 2011. https://doi.org/10.1109/LED.2011.2161748
  9. D.P. Foty, and S.L. Titomber, "Thermal effects in n-channel enhancement MOSFET's operated at cryogenic temperatures," IEEE Trans. Electron Devices, vol. 34, no.1, pp.107-113, 1987. https://doi.org/10.1109/T-ED.1987.22892