Development of Video Image-Guided Setup (VIGS) System for Tomotherapy: Preliminary Study

단층치료용 비디오 영상기반 셋업 장치의 개발: 예비연구

  • Kim, Jin Sung (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Ju, Sang Gyu (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Hong, Chae Seon (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Jeong, Jaewon (Department of Research & Development, Infinitt Healthcare Co., Ltd.) ;
  • Son, Kihong (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Shin, Jung Suk (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Shin, Eunheak (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Ahn, Sung Hwan (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Han, Youngyih (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Choi, Doo Ho (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • 김진성 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실) ;
  • 주상규 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실) ;
  • 홍채선 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실) ;
  • 정재원 (인피니트 헬스케어 연구개발부) ;
  • 손기홍 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실) ;
  • 신정석 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실) ;
  • 신은혁 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실) ;
  • 안성환 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실) ;
  • 한영이 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실) ;
  • 최두호 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실)
  • Received : 2013.03.26
  • Accepted : 2013.06.12
  • Published : 2013.06.30

Abstract

At present, megavoltage computed tomography (MVCT) is the only method used to correct the position of tomotherapy patients. MVCT produces extra radiation, in addition to the radiation used for treatment, and repositioning also takes up much of the total treatment time. To address these issues, we suggest the use of a video image-guided setup (VIGS) system for correcting the position of tomotherapy patients. We developed an in-house program to correct the exact position of patients using two orthogonal images obtained from two video cameras installed at $90^{\circ}$ and fastened inside the tomotherapy gantry. The system is programmed to make automatic registration possible with the use of edge detection of the user-defined region of interest (ROI). A head-and-neck patient is then simulated using a humanoid phantom. After taking the computed tomography (CT) image, tomotherapy planning is performed. To mimic a clinical treatment course, we used an immobilization device to position the phantom on the tomotherapy couch and, using MVCT, corrected its position to match the one captured when the treatment was planned. Video images of the corrected position were used as reference images for the VIGS system. First, the position was repeatedly corrected 10 times using MVCT, and based on the saved reference video image, the patient position was then corrected 10 times using the VIGS method. Thereafter, the results of the two correction methods were compared. The results demonstrated that patient positioning using a video-imaging method ($41.7{\pm}11.2$ seconds) significantly reduces the overall time of the MVCT method ($420{\pm}6$ seconds) (p<0.05). However, there was no meaningful difference in accuracy between the two methods (x=0.11 mm, y=0.27 mm, z=0.58 mm, p>0.05). Because VIGS provides a more accurate result and reduces the required time, compared with the MVCT method, it is expected to manage the overall tomotherapy treatment process more efficiently.

초고압 전산화단층촬영(megavoltage computed tomography, MVCT)이 단층치료(Tomotherapy) 환자의 치료 자세 교정 방법으로 사용되고 있다. MVCT는 부가적인 방사선 피폭뿐만 아니라 전체 치료 시간이 길어지는 단점을 가지고 있다. 이러한 문제점 해결을 위해 비디오 영상기반 환자 치료 자세 교정 시스템(video image-guided setup system, VIGS)을 개발했다. 단층치료 장치내 갠트리에 직각으로 2대의 비디오 카메라를 장착하고 이로부터 얻은 영상을 이용하여 환자의 자세 오차를 측정하는 프로그램을 자체 개발했다. 개발된 시스템은 사용자에 의해 정의된 관심 영역에서의 에지 검출(edge detection) 결과를 기반으로 자동 정합을 통해 자세 오차를 찾도록 고안되었다. 두경부 환자를 묘사하기 위해 휴먼 팬톰을 이용하여 컴퓨터 단층 치료계획 영상을 획득한 후 전산화 치료계획을 수행했다. 실제 치료 상태를 재현하기 위해 고정 용구를 이용하여 팬톰을 고정했으며 전산화치료계획 결과로 부터 팬톰 자세 검증을 위한 기준 MVCT 영상을 획득했다. 팬톰을 치료 위치에 위치시킨 후 MVCT 영상을 얻고 이를 기준 MVCT영상과 비교하여 치료계획시와 동일환 자세가 되도록 위치를 교정했다. 교정된 자세에서 VGIS를 이용하여 기준 비디오 영상을 획득했다. 10회 걸쳐 MVCT 영상을 이용한 자세 교정과 VIGS를 이용한 비디오 영상기반 자세 교정을 각각 수행하여 두 방법간의 교정 값 차이(상관 분석)와 분석 시간을 비교했다. 팬톰 위치 교정 시간은 VIGS 시스템($41.7{\pm}11.2$ seconds)이 MVCT 방법($420{\pm}6$ seconds)에 비해 현저히 적게 조사됐다(p<0.05). 하지만 두 방법간의 위치 오차 분석 결과 통계적으로 유의한 차이는 보이지 않았다(x=0.11 mm, y=0.27 mm, z=0.58 mm, p>0.05). VIGS시스템이 짧은 시간에 정확한 위치 오차 감지 능력을 보여 이의 개발이 단층치료의 절차를 효율적으로 개선하는데 효과적일 것으로 생각된다.

Keywords

References

  1. Chavaudra J, Bridier A: Definition of volumes in external radiotherapy: ICRU reports 50 and 62. Cancer Radiother 5(5): 472-478 (2001) https://doi.org/10.1016/S1278-3218(01)00117-2
  2. Mackie TR, Holmes T, Swerdloff S, et al: Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med Phys 20(6):1709-1719 (1993) https://doi.org/10.1118/1.596958
  3. Mackie TR, Kapatoes J, Ruchala K, et al: Image guidance for precise conformal radiotherapy. Int J Radiat Oncol Biol Phys 56(1):89-105 (2003) https://doi.org/10.1016/S0360-3016(03)00090-7
  4. Milliken BD, Rubin SJ, Hamilton RJ, Johnson LS, Chen GT: Performance of a video-image-subtraction-based patient positioning system. Int J Radiat Oncol Biol Phys 38(4):855-866 (1997) https://doi.org/10.1016/S0360-3016(97)00081-3
  5. Schoffel PJ, Harms W, Sroka-Perez G, Schlegel W, Karger CP: Accuracy of a commercial optical 3D surface imaging system for realignment of patients for radiotherapy of the thorax. Phys Med Biol 52(13):3949-3963 (2007) https://doi.org/10.1088/0031-9155/52/13/019
  6. Tao S, Wu A, Wu Y, Chen Y, Zhang J: Patient set-up in radiotherapy with video-based positioning system. Clin Oncol (R Coll Radiol) 18(4):363-366 (2006) https://doi.org/10.1016/j.clon.2005.11.018
  7. Yan Y, Song Y, Boyer AL: An investigation of a video- based patient repositioning technique. Int J Radiat Oncol Biol Phys 54(2):606-614 (2002) https://doi.org/10.1016/S0360-3016(02)02934-6
  8. Johnson LS, Milliken BD, Hadley SW, Pelizzari CA, Haraf DJ, Chen GT: Initial clinical experience with a video- based patient positioning system. Int J Radiat Oncol Biol Phys 45(1):205-213 (1999)
  9. MacKay RI, Graham PA, Logue JP, Moore CJ: Patient positioning using detailed three-dimensional surface data for patients undergoing conformal radiation therapy for carcinoma of the prostate: a feasibility study. Int J Radiat Oncol Biol Phys 49(1):225-230 (2001) https://doi.org/10.1016/S0360-3016(00)01385-7
  10. Cervino LI, Pawlicki T, Lawson JD, Jiang SB: Frame-less and mask-less cranial stereotactic radiosurgery: a feasibility study. Phys Med Biol 55(7):1863-1873 (2010) https://doi.org/10.1088/0031-9155/55/7/005
  11. Xu SP, Xie CB, Ju ZJ, et al: Measurement and analysis of the imaging dose with megavoltage computed tomography for helical tomotherapy. Ai Zheng 28(8):886-889 (2009)
  12. Beldjoudi G, Yartsev S, Bauman G, Battista J, Van Dyk J: Schedule for CT image guidance in treating prostate cancer with helical tomotherapy. Br J Radiol 83(987):241-251 (2010) https://doi.org/10.1259/bjr/28706108
  13. Ju SG, Huh W, Hong CS, et al: Development of a video- guided real-time patient motion monitoring system. Med Phys 39(5):2396-2404 (2012) https://doi.org/10.1118/1.3700734