DOI QR코드

DOI QR Code

Determination of Post-harvest Fungicide in Citrus Fruits Using LC-MS

LC-MS를 이용한 감귤류의 수확 후 처리 살균제 분석

  • Choi, Su-Jeong (Gangnam Agro-marine Products Inspection Center, Seoul Metropolitan Government Research Institute of Public Health and Environment) ;
  • Kim, Eun-Jeong (Gangnam Agro-marine Products Inspection Center, Seoul Metropolitan Government Research Institute of Public Health and Environment) ;
  • Lee, Jae-In (Gangnam Agro-marine Products Inspection Center, Seoul Metropolitan Government Research Institute of Public Health and Environment) ;
  • Cho, In-Soon (Gangnam Agro-marine Products Inspection Center, Seoul Metropolitan Government Research Institute of Public Health and Environment) ;
  • Park, Won-Hee (Gangnam Agro-marine Products Inspection Center, Seoul Metropolitan Government Research Institute of Public Health and Environment) ;
  • Hwang, In-Sook (Gangnam Agro-marine Products Inspection Center, Seoul Metropolitan Government Research Institute of Public Health and Environment) ;
  • Kim, Moo-Sang (Gangnam Agro-marine Products Inspection Center, Seoul Metropolitan Government Research Institute of Public Health and Environment) ;
  • Kim, Gun-Hee (Department of Food and Nutrition, Duksung Women's University)
  • 최수정 (서울시보건환경연구원 강남농수산물검사소) ;
  • 김은정 (서울시보건환경연구원 강남농수산물검사소) ;
  • 이재인 (서울시보건환경연구원 강남농수산물검사소) ;
  • 조인순 (서울시보건환경연구원 강남농수산물검사소) ;
  • 박원희 (서울시보건환경연구원 강남농수산물검사소) ;
  • 황인숙 (서울시보건환경연구원 강남농수산물검사소) ;
  • 김무상 (서울시보건환경연구원 강남농수산물검사소) ;
  • 김건희 (덕성여자대학교 식품영양학과)
  • Received : 2013.03.19
  • Accepted : 2013.05.23
  • Published : 2013.08.31

Abstract

Post-harvest fungicide residue was measured in citrus fruits. Samples were collected from local markets in Seoul and analyzed using liquid chromatography coupled with mass spectrometry (LC-MS). LC-MS results were validated for the assay of pesticides by using linearity, accuracy, precision, and limits of detection and quantification. The linearity in the concentration ranged from 0.005 to 2.0 mg/kg ($R^2$ >0.999). Sample recoveries ranged from 80.2 to 98.3% with relative standard deviations below 4.0% for spiking levels from 0.01 to 1.0 mg/kg. The limits of detection ranged between 0.002 and 0.008 mg/kg, and the limits of quantification ranged between 0.006 and 0.027 mg/kg. The highest residue levels for carbendazim, thiabendazole, imazalil, and azoxystrobin in citrus fruits were 0.541, 0.958, 0.721, and 0.052 mg/kg, respectively. The pesticide residues found in citrus fruits were blow maximum residue limits (MRLs) and are not a serious public health problem.

국내 유통되는 감귤류 총 100건을 대상으로 LC-MS을 이용하여 감귤류에 대한 수확 후 처리 농약 잔류량을 조사하였다. 보다 효율적인 농약 분석을 위해 LC-MS를 이용하여 직선성, 정확성, 정밀성, 검출한계 및 정량한계로 분석법의 유효성 검증을 하였다. 상관계수($R^2$)는 0.999이상의 우수한 직선성을 보였고, 농약의 회수율은 80.2-98.3%였고, RSD는 0.48-3.93%로 우수한 재현성을 나타냈다. 검출한계는 0.002-0.008 mg/kg였고, 정량한계는 0.006-0.027 mg/kg였다. 확립된 분석법에 의해 분석한 결과 최고 잔류 수준은 carbendazim은 0.541 mg/kg, thiabendazole은 0.958 mg/kg, imazalil은 0.721 mg/kg, azoxystrobin은 0.052 mg/kg였다. 본 연구결과에서 나타난 수확 후 처리 살균제는 잔류허용기준(MRL) 이내에서 안전하게 관리되고 있으나, 농약의 잔류성을 줄이기 위한 지속적인 모니터링이 필요하다.

Keywords

References

  1. Dreassi E, Zanfini A, Zizzari AT, Rosa CL, Botta M, Corbini G. LC/ESI/MS/MS determination of postharvest fungicide residues in citrus juices. LWT-Food Sci. Technol. 43: 1301-1306 (2010) https://doi.org/10.1016/j.lwt.2010.04.010
  2. Yang YS, Seo JM, Kim JP, Oh MS, Chung JK, Kim ES. A survey on pesticide residues of imported agricultural products circulated in Gwangju. J. Fd. Hyg. Safety 21: 52-59 (2006)
  3. Cho YS, Kang JB, Kim YH, Jeong JA, Huh JW, Lee SH, Lim YS, Bae HJ, Kang HG, Lee JH, Jung ES, Lee BH, Park YB, Lee JB. A survey on pesticide residues of imported fruits circulated in Gyeonggido. J. Pestic. Sci. 16: 195-201 (2012)
  4. Kanetis L, Forster H, Adaskaveg JE. Comparative efficacy of the new postharvest fungicides azoxysrtrobin, fludioxonil and pyrimethanil for managing citrus green mold. Plant Dis. 91: 1502-1511 (2007) https://doi.org/10.1094/PDIS-91-11-1502
  5. Food and Drug Administration. KFDAs Notification NO. 2012-1. Seoul, Korea. p. 27 (2012)
  6. Sharif Z, Man YB, Hamid NS, Keat CC. Determination of organochlorine and pyrethroid pesticides in fruit and vegetables using solid phase extraction clean-up cartridges. J. Chromatogr. A 1127: 254-261 (2006) https://doi.org/10.1016/j.chroma.2006.06.007
  7. Schirra M, Cabras P, Angioni A, D'hallewin G, Pala M. Residue uptake and storage responses of Tarocco blood oranges after preharvest thiabendazole spray and postharvest heat treatment. J. Agr. Food Chem. 50: 2293-2296 (2002) https://doi.org/10.1021/jf0114583
  8. Schirra M, Cabras P, Angioni A, Melis M. Residue level of imazalil fungicide in lemons following prestorage dip treatment at 20 and 50oC. J. Agr. Food Chem. 44: 2865-2869 (1996) https://doi.org/10.1021/jf9508256
  9. De Nino A, Santelli F, Servidio N, Sindona G, Tagarelli A. Identification and assay of organophosphate in organic oranges by gas chromatography with pulsed flame photometric detection and iontrap mass spectrometry. J. AOAC Int. 86: 1003-1007 (2003)
  10. Liu LB, Hashi Y, Qin YP, Zhou HX, Lin JM. Development of automated online gel permeation chromatography-gas chromatograph mass spectrometry for measuring multi residual pesticides in agricultural products. J. Chromatogr. B 845: 61-68 (2007) https://doi.org/10.1016/j.jchromb.2006.07.032
  11. Lehotay SJ, De Kok A, Hiemstra M, Van Bodegraven P. Validation of a fast and easy method for the determination of residues from 229 pesticides in fruits and vegetables using gas and liquid chromatography and mass spectrometric detection. J. AOAC Int. 88: 595-614 (2005)
  12. Fernandez R, Garrido Frenich A, Martinez Vidal JL, Romero Gonzalez R, Hernandez Torres ME. One-year routine application of a new and rapid method based on ultra performance liquid chromatography-tandem mass spectrometry to the analysis of selected pesticides in citrus fruits. Anal. Sci. 25: 535-540 (2009) https://doi.org/10.2116/analsci.25.535
  13. Blasco C, Font G, Pic Y. Evaluation of 10 pesticide residues in oranges and tangerines from Valencia (Spain). Food Control 17: 841-846 (2006) https://doi.org/10.1016/j.foodcont.2005.05.013
  14. Blasco C, Font G, Pic Y. Comparison of microextraction procedures to determine pesticides in oranges by liquid chromatography- mass spectrometry. J. Chromatogr. A 970: 201-212 (2002) https://doi.org/10.1016/S0021-9673(02)01034-8
  15. Valenzuela AI, Popa DS, Redondo MJ, Maes J. Comparison of various liquid chromatographic methods for the analysis of avermectin residues in citrus fruits. J. Chromatogr. A 918: 59-65 (2001) https://doi.org/10.1016/S0021-9673(01)00737-3
  16. Valenzuela AI, Redondo MJ, Pic Y, Font G. Determination of abamectin in citrus fruits by liquid chromatography-electrospray ionization mass spectrometry. J. Chromatogr. A 871: 57-65 (2000) https://doi.org/10.1016/S0021-9673(99)01190-5
  17. Hiemstra M, De Kok A. Comprehensive multi-residue method for the target analysis of pesticides in crops using liquid chromatography- tandem mass spectrometry. J. Chromatogr. A 1154: 3-25 (2007) https://doi.org/10.1016/j.chroma.2007.03.123
  18. Hernndez F, Pozo OJ, Sancho JV, Bijlsma L, Barreda M, Pitarch E. Multi residue liquid chromatography tandem mass spectrometry determination of 52 non gas chromatography-amenable pesticides and metabolites in different food commodities. J. Chromatogr. A 1109: 242-252 (2006) https://doi.org/10.1016/j.chroma.2006.01.032
  19. Pozo OJ, Marin JM, Sancho JV, Hernndez F. Determination of abamectin and azadirachtin residues in orange samples by liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogr. A 992: 133-140 (2003) https://doi.org/10.1016/S0021-9673(03)00325-X
  20. Blasco C, Font G, Pic Y. Analysis of pesticides in fruits by pressurized liquid extraction and liquid chromatography-ion trap-triple stage mass spectrometry. J. Chromatogr. A 1098: 37-43 (2005) https://doi.org/10.1016/j.chroma.2005.08.037
  21. Grimalt S, Pozo OJ, Sancho JV, Hernndez F. Use of liquid chromatography coupled to quadrupole time-of-flight mass spectrometry to investigate pesticide residues in fruits. Anal. Chem. 79: 2833-2843 (2007) https://doi.org/10.1021/ac061233x
  22. Rural Development Administration. Bulletin of Pesticide Registration Investigator (Guidance of pesticide residue test), Notice of Rural Development Administration No. 2009-1. Suwon, Korea (2009)
  23. European commission. Directorate general health and consumer protection. Guidance document on method validation and quality control procedures for pesticide residues analysis in food and feed, SANCO/10684/2009. pp. 12-15 (2010)
  24. Codex Alimentarius Commission. Guidelines on good laboratory practice in residue analysis. CAC/GL 40-1993, Rev.1 p. 25 (2003)
  25. Blasco C, Font G, Pic Y. Multiple-stage mass spectrometric analysis of six pesticides in oranges by liquid chromatography-atmospheric pressure chemical ionization-ion trap mass spectrometry. J. Chromatogr. A 1043: 231-238 (2004) https://doi.org/10.1016/j.chroma.2004.05.082
  26. Fernndez M, Rodrguez R, Pic Y, Maes J. Liquid chromatograpicmass spectrometric determination of post-harvest fungicides in citrus fruits. J. Chromatogr. A 912: 301-310 (2001) https://doi.org/10.1016/S0021-9673(01)00576-3
  27. Gyeonggi-do Institute of Health & Environment. 2011 Annual report of the pesticide residues in agricultural products. Gyeonggi- do Institute of Health & Environment, Suwon, Korea. pp. 26-28 (2012)
  28. Korea Crop Protection Association. Guideline of pesticides use. Samjeong Press Inc, Seoul, Korea. pp. 1243-1247 (2011)
  29. Yun ES, Lee MS, Hong MS, Jung SY, Lee YZ, Kim KS, Chae YZ, Park SG. Report of Seoul Metropolitan Government Research Institute of Public Health and Environment. Aram press, Seoul, Korea. Vol. 41 pp. 117-121 (2005)
  30. Lee MG, Shim JH, Ko SH, Chung HR. Research trends on the development of scientific evidence on the domestic maximum residue limits of pesticides. Food Sci. Ind. 43: 41-66 (2010)

Cited by

  1. Monitoring of Pesticide Residues and Risk Assessment in Some Fruits on the Market in Incheon, Korea vol.33, pp.2, 2014, https://doi.org/10.5338/KJEA.2014.33.2.111
  2. Application of zirconium dioxide nanoparticle sorbent for the clean-up step in post-harvest pesticide residue analysis vol.144, 2015, https://doi.org/10.1016/j.talanta.2015.05.055
  3. Analysis of Diflubenzuron in Agricultural Commodities by Multiresidue Method vol.18, pp.4, 2014, https://doi.org/10.7585/kjps.2014.18.4.269
  4. Matrix Effects and Interferences of Different Citrus Fruit Coextractives in Pesticide Residue Analysis Using Ultrahigh-Performance Liquid Chromatography–High-Resolution Mass Spectrometry vol.65, pp.23, 2017, https://doi.org/10.1021/acs.jafc.7b00243