DOI QR코드

DOI QR Code

Anti-diabetic Effects of Fermented Green Tea in KK-Ay Diabetic Mice

제2형 당뇨 모델 KK-Ay 마우스에 대한 발효 녹차의 항당뇨 효과

  • Lee, So-Young (Fermentation and Functionality Research Group, Korea Food Research Institute) ;
  • Park, So-Lim (Fermentation and Functionality Research Group, Korea Food Research Institute) ;
  • Nam, Young-Do (Fermentation and Functionality Research Group, Korea Food Research Institute) ;
  • Yi, Sung-Hun (Fermentation and Functionality Research Group, Korea Food Research Institute) ;
  • Lim, Seong-Il (Fermentation and Functionality Research Group, Korea Food Research Institute)
  • 이소영 (한국식품연구원 발효기능연구단) ;
  • 박소림 (한국식품연구원 발효기능연구단) ;
  • 남영도 (한국식품연구원 발효기능연구단) ;
  • 이성훈 (한국식품연구원 발효기능연구단) ;
  • 임성일 (한국식품연구원 발효기능연구단)
  • Received : 2013.02.25
  • Accepted : 2013.04.24
  • Published : 2013.08.31

Abstract

The anti-diabetic effect of green tea fermented by cheonggukjang was evaluated using KK-$A^y$ mice, an animal model of type 2 diabetes mellitus. Over a 90 day testing period, food and water intake decreased significantly in the group fed fermented green tea (FGT) and a group fed commercially available health functional food (PC), when compared with a diabetic control group (DC). The blood glucose levels of FGT mice were lower than in DC mice throughout the test period and were similar to the levels in PC after 60 days. Levels of Hemoglobin A1c (HbA1c) levels and insulin resistance were lower in mice of the FGT group than in mice of the DC group. DNA microarray analysis showed that administration of FGT increased the abundance of 12 mRNA transcripts related to diabetes. Whereas FGT increased hexokinase transcripts related to glycolysis more than 37 fold, levels of Pdx1 (pancreatic and duodenal homeobox1) and Cacna1e (calcium channel) transcripts increased more than 1.8 fold.

제2형 당뇨질환모델인 KK-$A^y$를 이용하여 녹차와 발효녹차의 항당뇨 활성을 측정한 결과, 발효 녹차는 비발효녹차에 비해 높은 항당뇨 활성이 있는 것으로 분석되었다. 발효녹차 섭취군의 혈당은 당뇨 대조군보다 낮게 유지되었으며, 60일 이후에는 시판 건강기능식품 섭취군(양성대조군)과 유사한 수준으로 유지되었을 뿐만 아니라 당화혈색소값도 8.08%로 대조군 및 양성대조군 군보다 낮게 나타났다. 간 조직의 DNA microarray 분석결과, 이러한 발효녹차의 항당뇨 활성은 glycolysis 활성화를 통한 glucose 이용율 및 베타세포 function 증가에 의한 것으로 사료된다. 또한 발효녹차는 혈중 triglyceride 수치를 낮추고 HDL-cholesterol 수치를 높이는 등 당뇨로 인해 발생할 수 있는 지질대사이상 개선에도 효과가 있음을 알 수 있었다. 이로 미루어 보아 발효녹차는 항당뇨 관련 건강기능식품으로의 상업적 이용가능성이 높을 것으로 생각된다.

Keywords

References

  1. Korean Diabetes Association, Health Insurance Review & Assessment Service. Report of Task Force Team For Basic Statistical Study of Korean Diabetes Mellitus: Diabetes in Korea 2007. 1st ed. Goldfishery, Seoul, Korea (2008)
  2. Levetan C. Oral antidiabetic agents in type 2 diabetes. Curr. Med. Res. Opin. 23: 945-952 (2007) https://doi.org/10.1185/030079907X178766
  3. Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 63: 385-411 (2005)
  4. Clissold SP. Edwards C. Acarbose: a preliminary review its pharmacodynamic and pharmacokinetic properties and therapeutic potential. Drugs 35: 214-243 (1988)
  5. Diamant M, Heine RJ. Thiazolidinediones in type 2 diabetes mellitus: current clinical evidence. Drugs 63: 1373-1405 (2003) https://doi.org/10.2165/00003495-200363130-00004
  6. Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JEN. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. New Engl. J. Med. 333: 550-554 (1995) https://doi.org/10.1056/NEJM199508313330903
  7. Barnett D, Craig JG, Robinson DS, Rogers MP. Effect of clofibrate on glucose tolerance in maturity onset diabetes. Brit. J. Clin. Pharmaco. 4: 455-458 (1977) https://doi.org/10.1111/j.1365-2125.1977.tb00761.x
  8. Murphy EJ, Davern TJ, Shakil AO, Shick L, Masharani U, Chow H, Freise C. Lee WM, Bass NM. Troglitazone-induced fulminant hepatic failure. Acute Liver Failure Study Group. Digest. Dis. Sci. 45: 549-553 (2000) https://doi.org/10.1023/A:1005405526283
  9. Han HK, Je HS, Kim GH. Effect of Cirsium japonicum powder on plasma glucose and lipid level in streptozotocin induced diabetic rats. Korean J. Food Sci. Technol. 42: 343-349 (2010)
  10. Kun SN, Kang SJ. Effect of black ginseng (9 times steaming ginseng) on hypoglycemic action and changes in the composition of ginsenosides on the steaming process. Korean J. Food Sci. Technol. 41: 77-81 (2009)
  11. Iizuka Y, Sakurai E, Tanaka Y. Antidiabetic effect of folium mori in GK rats. Yakugaku zasshi 121: 365-369 (2001) https://doi.org/10.1248/yakushi.121.365
  12. Oh WK, Lee CH, Lee MS, Bae EY, Sohn CB, Oh H, Kim BY, Ahn JS. Antidiabetic effects of extracts from Psidium guajava. J. Ethnopharmacol. 96: 411-415 (2005) https://doi.org/10.1016/j.jep.2004.09.041
  13. Bae EA, Kim NY, Han MJ, Choo MK, Kim DH. Transformation of ginsenosides to compounds K (IH-901) by lactic acid bacteria of human intestine. J. Microbiol. Biotechnol. 13: 9-14 (2003)
  14. Kusznierewicz B, Smiechowska A, Bartoszek A, Namiesnik J. The effect of heating and fermenting on antioxidant properties of white cabbage. Food Chem. 108: 853-861 (2008) https://doi.org/10.1016/j.foodchem.2007.11.049
  15. Han CC, Wei H, Guo J. Anti-inflammatory effects of fermented and non-fermented sophora flavescens: a comparative study. BMC Complem. Altern. M. 11: 100-106 (2011) https://doi.org/10.1186/1472-6882-11-100
  16. Cabrera C, Artacho R, Gimenez R. Beneficial effects of green tea-a review. J. Am. Coll. Nutr. 25: 79-99 (2006) https://doi.org/10.1080/07315724.2006.10719518
  17. Xu J, Zhu SG, Yang FM, Cheg LC, Hu Y, Pan GX, Hu QH. The influence of selenium on the antioxidant activity of green tea. J. Sci. Food Agr. 83: 451-455 (2003) https://doi.org/10.1002/jsfa.1405
  18. Yee YK. Koo MW. Anti-helicobacter pylori activity of Chinese tea: in vitro study. Aliment. Pharm. Ther. 14: 635-638 (2000) https://doi.org/10.1046/j.1365-2036.2000.00747.x
  19. Sabu MC, Smitha K, Kuttan R. Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. J. Ethnopharmacol. 83: 109-116 (2002) https://doi.org/10.1016/S0378-8741(02)00217-9
  20. Zheng G, Sayama K, Okubo T, Juneja LR, Oguni I. Anti-obesity effects of three major components of green tea, catechins, caffeine and theanine in mice. In Vivo 18:55-62 (2004)
  21. Yang TT, Koo MW. Chinese green tea lowers cholesterol level through an increase in fecal lipid excretion. Life Sci. 66: 411-423 (2000)
  22. Feng Q, Torii Y, Uchida K, Nakamura Y, Hara Y, Osawa T. Black tea polyphenols, theaflavins, prevent cellular DNA damage by inhibiting oxidative stress and suppressing cytochrome P450 IAI in cell culture. J. Agr. Food Chem. 50: 213-220 (2002) https://doi.org/10.1021/jf010875c
  23. Kuo KL, Weng MS, Chiang CT, Tsai YJ, Lin-Shiau SY, Lin JK. Comparative studies on the hypolipidemic and growth effects of oolong, black, pu-erh, and green tea leaves in rats. J. Agr. Food Chem. 53: 480-489 (2005) https://doi.org/10.1021/jf049375k
  24. Gomes A, Vedasiromoni JR, Das M, Sharma RM, Ganguly DK. Anti-hyperglycemic effect of black tea (Camellia sinensis) in rat. J. Ethnopharmacol. 45: 223-226 (1995) https://doi.org/10.1016/0378-8741(95)01223-Z
  25. Lee SI, Lee YK, Kim SD, Yang SH, Suh JW. Dietary effects of post-fermented green tea by Monascus pilosus on the body weight serum lipid profiles and the activities of hepatic antioxidative enzymes in mouse fed a high fat diet. J. Appl. Biol. Chem. 55: 85-94 (2012) https://doi.org/10.3839/jabc.2011.064
  26. Chen YS, Liu BL, Chang YN. Bioactivities and sensory evaluation of pu-erh teas made from three tea leaves in an improved pile fermentation process. J. Biosci. Bioeng. 109: 557-563 (2010) https://doi.org/10.1016/j.jbiosc.2009.11.004
  27. Huang HC, Lin JK. Pu-erh tea, green tea, and black tea suppresses hyperlipidemia, hyperleptinemia and fatty acid synthase through activating AMPK in rats fed a high-fructose diet. Food Funct. 3: 170-177 (2012) https://doi.org/10.1039/c1fo10157a
  28. Huang Q, Chen S, Chen H, Wang Y, Wang Y, Hochstetter D, Xu P. Studies on the bioactivity of aqueous extract of pu-erh tea and its fraction: in vitro antioxidant activity and ${\alpha}$-glycosidase inhibitory property, and their effect on postprandial hyperglycemia in diabetic mice. Food Chem. Toxicol. 53: 75-83 (2013) https://doi.org/10.1016/j.fct.2012.11.039
  29. Park JH, Kim Y, Kim SH. Green tea extract (Camellia sinensis) Fermented by Lactobacillus fermentum attenuated alcohol-induced liver damage. Biosci. Biotech. Bioch. 76: 2294-2230 (2012) https://doi.org/10.1271/bbb.120598
  30. Miura T, Koike T, Ishida T. Antidiabetic activity of green tea (Thea sinensis L). in genetically type 2 diabetic mice. J. Health Sci. 51: 708-710 (2005) https://doi.org/10.1248/jhs.51.708
  31. Lee BR, Koh KO, Park PS. Anti-hyperglycemic effects of green tea extract on alloxan-induced diabetic and OLETF rats. J. Korean Soc. Food Sci. Nutr. 36: 696-702 (2007) https://doi.org/10.3746/jkfn.2007.36.6.696
  32. Kumar B, Gupta SK, Nag TC, Srivastava S, Saxena R. Green tea prevents hyperglycemia-induced retinal oxidative stress and inflammation in streptozotocin-induced diabetic rats. Ophthalmic Res. 47: 103-108 (2012) https://doi.org/10.1159/000330051
  33. Kamiyama O, Sanae F, Ikeda K, Higashi Y, Minami Y, Asano N, Adachi I, Kato A. In vitro inhibition of $\alpha$-glucosidases and glycogen phosphorylase by catechin gallates in green tea. Food Chem. 122: 1061-1066 (2010) https://doi.org/10.1016/j.foodchem.2010.03.075
  34. Anderson RA, Polansky MM. Tea enhances insulin activity. J. Agr. Food Chem. 50:7182-7186 (2002) https://doi.org/10.1021/jf020514c
  35. Cameron AR, Anton S, Melville L, Houston NP, Dayal S, McDougall GJ, Stewart D, Rena G. Black tea polyphenols mimic insulin/insulin-like growth factor-1 signalling to the longevity factor FOXO1a. Aging Cell 7: 69-77 (2008) https://doi.org/10.1111/j.1474-9726.2007.00353.x
  36. Ma X, Tsuda S, Yang X, Gu N, Tanabe H, Oshima R, Matsuchita T, Egawa T, Dong AJ, Zhu BW, Hayashi T. Pu-erh tea hotwater extract activates Akt and induced insulin-independent glucose transport in rat skeletal muscle. J. Med. Food 16: 259-262 (2013) https://doi.org/10.1089/jmf.2012.2520
  37. Stratton IM, Adler AI, Neil HAW, Matthews DR, Manley SE, Cull CA, Hadden D, Turner RC, Holman RR. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. Brit. Med. J. 321: 405-412 (2000) https://doi.org/10.1136/bmj.321.7258.405
  38. Shanik MH, Xu Y, Skrha J, Dankner R, Zick Y, Roth J. Insulin resistance and hyperinsulinemia. Diabetes Care 31: S262-S268 (2008) https://doi.org/10.2337/dc08-s264
  39. Srinivasan K, Ramarao P. Animal models in type 2 diabetes research: An overview. Indian J. Med. Res. 125: 451-472 (2007)
  40. Mattews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentration in man.Diabetologia 28: 412-419 (1985) https://doi.org/10.1007/BF00280883
  41. Krauss RM. Lipids and lipoproteins in patients with type 2 diabetes. Diabetes Care 27: 1496-1504 (2004) https://doi.org/10.2337/diacare.27.6.1496
  42. Avramoglu RK, Basciano H, Adeli K. Lipid and lipoprotein dysregulation in insulin resistant states. Clin. Chim. Acta 368: 1-19 (2006) https://doi.org/10.1016/j.cca.2005.12.026
  43. Kolovou GD, Anagnostopoulou KK, Cokkinos DV. Pathophysiology of dyslipidaemia in the metabolic syndrome. Postgrad. Med. J. 81: 358-366 (2005) https://doi.org/10.1136/pgmj.2004.025601
  44. Hirano T. Lipoprotein abnormalities in diabetic nephropathy. Kidney Int. 56 (suppl.) 71: S22-S24 (1999)
  45. Castelli WP, Garrison RJ, Wilson PW, Abbott RD, Kalousdian S, Kannel WB. Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham study. J. Am. Med. Assoc. 256: 2835-2838 (1986) https://doi.org/10.1001/jama.1986.03380200073024
  46. de Santana MB, Madarino MG, Cardoso JR, Dichi I, Dichi JB, Camargo AEI, Fabris BA, Rodrigues RJ, Fatel ECS, Nixdorf SL, Simao ANC, Cecchini R, Barbosa DS. Association between soy and green tea (Camellia sinensis) diminishes hypercholesterolemia and increases total plasma antioxidant potential in dyslipidemic subjects. Nutrition 24: 562-568 (2008) https://doi.org/10.1016/j.nut.2008.02.007
  47. Unno T, Tago M, Suzuki Y, Nozawa A, Sagesaka YM, Kakuda T, Egawa K, Kondo K. Effect of tea cathechins on postprandial plasma lipid responses in human subjects. Brit. J. Nutr. 27: 363- 370 (2008)
  48. Tsao TS, Burcelin R, Charron MJ. Regulation of hexokinase II gene expression by glucose flux in skeletal muscle. J. Biol. Chem. 271: 14959-14963 (1996) https://doi.org/10.1074/jbc.271.25.14959
  49. Postic C, Leturque A, Rencurel F, Printz RL, Forest C, Granner DK, Girard J. The effects of hyperinsulinemia and hyperglycemia on GLUT4 and hexokinase II mRNA and protein in rat skeletal muscle and adipose tissue. Diabetes 42: 922-929 (1993) https://doi.org/10.2337/diab.42.6.922
  50. Frank SK, Fromm HJ. Effect of streptozotocin-induced diabetes and insulin treatment on the synthesis of hexokinase II in the skeletal muscle of the rat. Arch. Biochem. Biophys. 249: 61-69 (1986) https://doi.org/10.1016/0003-9861(86)90560-6
  51. Braithwaite SS, Palazuk B, Colca JR, Edwards CW, Hofmann C. Reduced expression of hexokinase II in insulin-resistant diabetes. Diabetes 44: 43-48 (1995) https://doi.org/10.2337/diab.44.1.43
  52. Vestergaard H, Bjorbaek C, Hansen T, Larsen FS. Granner DK, Pedersen O. Impaired activity and gene expression of hexokinase II in muscle from non-insulin-dependent diabetes mellitus patients. J. Clin. Invest. 96: 2639-2645 (1995) https://doi.org/10.1172/JCI118329
  53. Hart AW, Baeza N, Apelqvist A, Edlund H. Attenuation of FGF signalling in mouse beta-cells leads to diabetes. Nature 408: 864- 868 (2000) https://doi.org/10.1038/35048589
  54. Matsuda Y, Saegusa H, Zong S, Noda T, Tanabe T. Mice lacking Ca(v)2.3 (alpha1E) calcium channel exhibit hyperglycemia. Biochem. Bioph. Res. Co. 289: 791-795 (2001) https://doi.org/10.1006/bbrc.2001.6051
  55. Pereverzev A, Mikhna M, Vajna R, Gissel C, Henry M, Weiergraber M, Hescheler J, Smyth N, Schneider T. Disturbances in glucose-tolerance, insulin-release, and stress-induced hyperglycemia upon disruption of the Ca(v)2.3 (alpha 1E) subunit of voltage- gated Ca(2+) channels. Mol. Endocrinol. 16: 884-895 (2002) https://doi.org/10.1210/me.16.4.884

Cited by

  1. Anti-Diabetic Effects of Mori Folium Extract on High-Fat Diet and Streptozotocin-Induced Type II Diabetes Mellitus in Mice vol.30, pp.1, 2015, https://doi.org/10.6116/kjh.2015.30.1.1.
  2. The Efficacy of Lowering Blood Glucose Levels Using the Extracts of Fermented Bitter Melon in the Diabetic Mice vol.58, pp.3, 2015, https://doi.org/10.3839/jabc.2015.041
  3. Anti-diabetic effect of the mixture of mulberry leaf and green tea powder in rats with streptozotocin-induced diabetes vol.21, pp.4, 2014, https://doi.org/10.11002/kjfp.2014.21.4.549
  4. Postprandial hypoglycemic effects of mulberry twig and root barkin vivoandin vitro vol.49, pp.1, 2016, https://doi.org/10.4163/jnh.2016.49.1.18
  5. Protective role of green tea on diabetic nephropathy���A review vol.2, pp.1, 2016, https://doi.org/10.1080/23312025.2016.1248166