DOI QR코드

DOI QR Code

和算对中算的继承与创新-以关孝和的內插法为例

The Succession and Innovation of Wasan to Chinese Mathematics -A case study on Seki's interpolation

  • 투고 : 2013.07.03
  • 심사 : 2013.08.10
  • 발행 : 2013.08.31

초록

Japanese mathematics, namely Wasan, was well-developed before the Meiji period. Seki Takakazu (1642?-1708) is the most famous one. Taking Seki's interpolation as an example, the similarities and differences are made between Wasan and Chinese mathematics. According to investigating the sources and attitudes to this problem which both Japanese and Chinese mathematicians dealt with, the paper tries to show how and why Japanese mathematicians accepted Chinese tradition and beyond. Professor Wu Wentsun says that, in the whole history of mathematics, there exist two different major trends which occupy the main stream alternately. The axiomatic deductive system of logic is the one which we are familiar with. Another, he believes, goes to the mechanical algorithm system of program. The latter featured traditional Chinese mathematics, as well as Wasan. As a typical sample of the succession of Chinese tradition, Wasan will help people to understand the real meaning of the mechanical algorithm system of program deeper.

키워드

참고문헌

  1. The Japan Academy ed., A History of Japanese Mathematics before Meiji Period, vol. 2, Tokyo: Linchuan Bookstore, 1979, 148-154. 日本学士院编, <明治前日本数学史(2)>, 东京:临川书店,1979, 148-154.
  2. Feng Lisheng, "On the Structural Principle of the 3-power Interpolation in Shoushi Calendar in View of Seki's Leicai zhaocha fa", Studies in the History of Natural Sciences, 20(2) (2001), 132-142. 冯立升, "从关孝和的累裁招差法看<<授时历>>平立定三差法之原", 自然科学史研究20(2) (2001), 132-142.
  3. Xu Zelin, "Jananese Mathemticians'Inheritance and Development to the Methord of Interpolation in Old China", Li Di ed., Studies in the History of Mathematics, vol. 7, Hohhot, Inner Mongolia University Press,2001, 124-133. 徐泽林. 和算家对招差法的 继承与发展, 李迪, 数学史研究第七辑, 呼和浩特: 内蒙古大学出版社,2001,124-133.
  4. China Bookstore ed., Collected Monographs on Astronomy, Music and Calendars from the Dynastic Histories, vol. 10, Beijing: China Bookstore,1976,3595-3620. 中华书局编, <历代天文律历等志汇编(10)>, 北京: 中华书局,1976,3595-3620.
  5. Huang Zongxi, A Study on the Shoushi Calendar, 1923. (清) 黄宗羲, <授时历故>, 嘉业堂从书本, 1923.
  6. Li Yan, A Study on Interpolations of Chinese Mathematicians, Beijing: Science Press, 1957,62-73. 李俨, <中算家的内插法研究>, 北京: 科学出版社,1957,62-73.
  7. Qian Baocong, A History of Chinese Mathematics, Beijing: Science Press,1964,189-197. 钱宝琮, <中国数学史>, 北京:科学出版社,1964,189-197.
  8. Qu Anjing, Ji Zhigang & Wang Rongbin, Explorations on Chinese Mathematical Astronomy, Xian: Northwest University Press,1994,185-200,309-321. 曲安京,纪志刚,王荣 彬, <中国古代数理天文学探析>, 西安: 西北大学出版社,1994,185-200,309-321.
  9. Qu Anjing, "The Cubic Interpolation in Chinese Mathematical Astronomy", Studies in the History of Natural Sciences 15(2) (1996), 131-143. 曲安京, "中国古代历法中的三 次内插法", 自然科学史研究15(2) (1996), 131-143.
  10. Huang Ding, An Outline of a Glimpse of Astronomical Achievements, vol. 12, Taipei: Photocopy of Laogu Cutural Campany,1984,163. (清) 黄鼎, <天文大成管窥辑要(卷12)>, 云林阁刊本, 1653(顺治十年), 台北: 老古文化事业公司影印本,1984, 163.
  11. Hirayama, et al. ed., Complete Works of Seki Takakazu—General Algorithms, Osaka: Osaka Education Book Publishing House,1974,273-282. 平山諦等编, 関孝和全集� 括要算法, 大阪:大阪教育图书株式会社,1974,273-282.
  12. Hirayama, et al. ed., Complete Works of Seki Takakazu—Collected Books by Seki, Osaka: Osaka Education Book Publishing House,1974,423-464. 平山諦等编, <関孝和 全集 関訂書>, 大阪: 大阪教育图书株式会社,1974,423-464.
  13. Yoshio Mikami, "Seki Takakazu's Achievements, and Comparison and Relationship with the Algorithm of China and Yanbe of Keihan Area", Japan Journal (20)1933, 554-555. 三上義夫, "関孝和の業績と京坂の山家並びに支那の算法との関係及び比 較", 東洋学報20 (1933), 554-555.
  14. Tsuchikura, et al. ed., Invitation to History of Mathematics in East Asia—Collected Works of Fujiwara Matsusaburo on the History of Mathematics, Sendai: Tohoku University Publishing House,2007,57-72. 土倉保等编, <東洋数学史への招待�藤原松三郎数学 史論文集>, 仙台: 東北大学出版会,2007,57-72.
  15. Takenouchi Osamu, "The Tuoji Methord in Seki's General Algorithm vol.1, 1583, Study of the History of Mathematics", vol. 1546, Kyoto: RIMS of Kyoto University, 2007,157-162. 竹之内修, "関孝和《括要算法…卷元》垜積術", 数理解析研究所講究録1546, 京都: 京都大学数理解析研究所,2007,157-162.
  16. Ogawa Tsukane, "The Bernoulli Numbers Discovered by Seki Takakazu", 1583, Study of the History of Mathematics, vol. 1583, Kyoto: RIMS of Kyoto University, 2008,1-18. 小川束, "関孝和によるベルヌ􀊔ィ数の發見", 数理解析研究所講究録(1583), 京都: 京都大学数理解析研究所,2008,1-18.
  17. Wu Wentsun, Mathematics Mechanization, Beijing: Science Press & Dorrecht: Kluwer Academic Publishers, 2000, 1-66.

피인용 문헌

  1. Indefinite Problem in Wasan vol.26, pp.5_6, 2013, https://doi.org/10.14477/jhm.2013.26.5_6.329