DOI QR코드

DOI QR Code

수학사와 지적 흥미를 고려한 복소수의 두 가지 제시 방법

Two Presentation Ways of Complex Numbers Consulting History and Intellectual Interest

  • 투고 : 2013.05.03
  • 심사 : 2013.07.13
  • 발행 : 2013.08.31

초록

It has been proposed since modern times that we need to consult the history of mathematics in teaching mathematics, and some modifications of this principle were made recently by Lakatos, Freudenthal, and Brousseau. It may be necessary to have a direction which we consult when modifying the history of mathematics for students. In this article, we analyse the elements of the cognitive interest in Hamilton's discovery of the quaternions and in the history of discovery of imaginary numbers, and we investigate the effects of these elements on attention of the students of nowadays. These works may give a direction to the historic-genetic principle in teaching mathematics.

키워드

참고문헌

  1. C. B. Boyer and U. C. Merzbach, A history of mathematics, John Siley & Sons, Inc., 1968. C. B. Boyer and U. C. Merzbach, 양영오, 조윤동 역,수학의 역사 (하), 경문사, 2000. (원저는 1968년 출판).
  2. J. Bruner, Acts of Meaning, Harvard University Press, 1990.
  3. J. Bruner,"The Narrative Construction of Reality", Critical Inquiry 18(1) (1991), 1-21. https://doi.org/10.1086/448619
  4. J. Bruner, The Culture of Education, Harvard University Press, 1996. J. Bruner, 강현석, 이자현 역,교육의 문화, 교육과학사, 2005. (원저는 1996년 출판).
  5. J. Bruner, Actual Minds, Possible Worlds, Harvard University Press, 1986. J. Bruner, 강 현석, 이자현, 유제순, 김무정, 최윤경, 최영수 역,교육 이론의 새로운 지평 : 마음과 세계를 융합하기, 교육과학사, 2011. (원저는 1986년 출판).
  6. H. Halberstam and R. E. Ingram Hamilton (Eds.), The Mathematical Papers of Sir William Rowan Hamilton, vol. III, Algebra, Cambridge University Press, 1967.
  7. C. Hartshorne and P. Weiss (Eds.), Collected Papers of Charles Sanders Peirce, Vol. 2, Elements of Logic, Thoemmes Press, 1932/1998.
  8. W. Kintsch,"Learning from Text, Levels of Comprehension, or Why Anyone Would Read a Story Anyway", Poetics 9(1980), 87-98. https://doi.org/10.1016/0304-422X(80)90013-3
  9. Kang M. J.,"A Study on C. S. Peirce's Semiotics: For a New Philosophy of Art History", Unpublished doctoral thesis of SNU, 2007. 강미정,"C. S. 퍼스의 기호학 연구 : 신미술사의 철학을 위하여", 서울대 박사학위 논문, 2007.
  10. S. Klassen,"The Construction and Analysis of a Science Story: A Proposed Methodology", Science and Education 18(2009), 401-423. https://doi.org/10.1007/s11191-008-9141-y
  11. W. Labov and J. Waletzsky,"Narrative Analysis: Oral Version of Personal Experience", Essays on the Verbal and Visual Arts (J. Helm Ed.), Seattle: University of Washington Press, 1967, 12-44.
  12. Lee D. H.,"Evolution of Geometric Interpretation of Complex Number : Focused on Descartes, Wallis, Wessel", The Korean Journal for History of Mathematics 20(3) (2007), 59-72. 이동환,"복소수의 기하적 해석의 발달 : Descartes, Wallis, Wessel를 중심으로", 한국수학사학회지 20(3) (2007), 59-72.
  13. Lee D. H.,"Development of the concept of complex number and it's educational implications", The Korean Journal for History of Mathematics 25(3) (2012), 53-75. 이동환,"복소수 개념의 발달과 교육적 함의", 한국수학사학회지 25(3) (2012), 53-75.
  14. Ministry of Education, Science and Technology, The Ways of Reinforcing Public Education and Reducing Private Education, released on May 19, 2011. 교육과학기술부,공교육 강화-사교육 경감 선순환 방안, 2011.5.19. 배포자료.
  15. Min S. Y. and Joung Y. J.,"On the historic-generic principle: focused on representations", The Proceeding of Conference of the Study of Mathematics Education (2003), 1-10. 민세 영, 정연준,"역사발생적 원리에 대한 고찰 : 재현 개념을 중심으로", 수학교육학연구 발표대회 논문집 (2003), 1-10.
  16. Yoo Y. J.,"On Critically Amending of the Learning Principles of History of Mathematics", The Korean Journal for History of Mathematics 15(1) (2002), 109-114. 유윤재,"역사발생 적 원리의 비판적 수용에 대하여", 한국수학사학회지 15(1) (2002), 109-114.
  17. B. L. Van der Waerden,"Hamilton's Discovery of Quaternions", Mathematics Magazine 49(5) (1976), 227-234. https://doi.org/10.2307/2689449
  18. Woo J.H. andMin S. Y.", A study on historico-genetic principle of teaching and learning in mathematics", The Journal of Educational Research in Mathematics 12(3) (2002), 409-424. 우정호, 민세영,"역사발생적 수학 학습-지도 원리에 관한 연구", 수학교육학연구 12(3) (2002), 409-424.
  19. Woo J. H., Min S. Y., and Joung Y. J.,"A Study on the Historic-Genetic Principle of Mathematics Education(2)—History of Mathematics in the Teaching of Mathematics and Mathematics Teachers Education", School Mathematics 5(4) (2003), 555-572. 우정호, 민세 영, 정연준,"역사발생적 수학교육 원리에 대한 연구 (2)—수학사의 교육적 이용과 수학교사 교육", 학교수학 5(4) (2003), 555-572.
  20. Woo J. H., Park M. A., and Kwon S. I.,"A Study on the Historic-Genetic Principle of Mathematics Education(1) - A Historic-Genetic Approach to Teaching the Meaning of Proof", School Mathematics 5(4) (2003), 401-420. 우정호, 박미애, 권석일,"역사발생적 수 학교육 원리에 대한 연구 (1) - 증명의 의미 지도의 역사발생적 전개", 학교수학 5(4) (2003), 401-420.

피인용 문헌

  1. Utilizing 'Wonyongsambanghogu' in mathematics education vol.27, pp.5, 2014, https://doi.org/10.14477/jhm.2014.27.5.313
  2. Generalization of 'Gakdeungbyeonhyeongseupyu' by utilizing GeoGebra vol.29, pp.2, 2016, https://doi.org/10.14477/jhm.2016.29.2.073