DOI QR코드

DOI QR Code

Error Analysis of Image Velocimetry According to the Variation of the Interrogation Area

상관영역 크기 변화에 따른 영상유속계의 오차 분석

  • Kim, Seojun (Dept. of Civil & Environmental Eng, Myongji University) ;
  • Yu, Kwonkyu (Dept. of Civil Eng, Dong-Eui University) ;
  • Yoon, Byungman (Dept. of Civil & Environmental Eng, Myongji University)
  • Received : 2013.03.25
  • Accepted : 2013.05.13
  • Published : 2013.08.31

Abstract

Recently image velocimetries, including particle image velocimetry (PIV) and surface image velocimetry (SIV), are often used to measure flow velocities in laboratories and rivers. The most difficult point in using image velocimetries may be how to determine the sizes of the interrogation areas and the measurement uncertainties. Especially, it is a little hard for unskilled users to use these instruments, since any standardized measuring techniques or measurement uncertainties are not well evaluated. Sometimes the user's skill and understanding on the instruments may make a wide gap between velocity measurement results. The present study aims to evaluate image velocimetry's uncertainties due to the changes in the sizes of interrogation areas and searching areas with the error analyses. For the purpose, we generated 12 series of artificial images with known velocity fields and various numbers and sizes of particles. The analysis results showed that the accuracy of velocity measurements of the image velocimetry was significantly affected by the change of the size of interrogation area. Generally speaking, the error was reduced as the size of interrogation areas became small. For the same sizes of interrogation areas, the larger particle sizes and the larger number of particles resulted smaller errors. Especially, the errors of the image velocimetries were more affected by the number of particles rather than the sizes of them. As the sizes of interrogation areas were increased, the differences between the maximum and the minimum errors seemed to be reduced. For the size of the interrogation area whose average errors were less than 5%, the differences between the maximum and the minimum errors seemed a little large. For the case, in other words, the uncertainty of the velocity measurements of the image velocimetry was large. In the viewpoint of the particle density, the size of the interrogation area was small for large particle density cases. For the cases of large number of particle and small particle density, however, the minimum size of interrogation area became smaller.

최근 수리 실험 및 계측 분야에 영상유속계가 많이 이용되고 있다. 그러나 영상유속계의 영상 분석에 대한 표준적인 방법과 측정 불확도가 정립되어 있지 않아 일반 사용자들이 사용하기 어려운 것이 사실이다. 특히 영상유속계를 이용한 유속 산정 시 상관영역 크기 결정에 대한 기준이 없기 때문에 사용자마다 유속 산정 결과가 차이가 나는 문제가 있다. 이에 본 연구에서는 영상유속계의 상관영역 크기 변화에 따른 오차분석을 통해 상관영역 크기 결정을 위한 자료를 제시하고 자한다. 오차분석을 위해 12개의 인공영상군을 제작하였으며, 다양한 입자수와 입자크기의 영상을 획득한 후 상관영역의 크기를 변화시키면서 산정한 유속을 인공영상의 유속 참값과 비교하여 오차분석을 수행하였다. 오차 분석결과 상관영역의 크기 변화에 따라 영상유속계로 산정한 유속값에 대한 오차가 달라짐을 확인하였고, 상관영역의 크기를 크게 결정할수록 오차가 줄어드는 것으로 나타났고, 동일한 상관영역의 크기로 유속을 산정할 경우 입자 크기가 증가할수록 또는 입자수가 증가할수록 오차가 작게 나타났다. 특히 영상유속계의 오차는 입자의 크기 보다는 입자수의 변화에 좀 더 영향을 많이 받는 것으로 나타났다. 또한 상관영역의 크기가 커짐에 따라 최대 오차와 최소 오차간의 간격이 줄어드는 것을 확인하였으며, 영상 전체에서 산정한 유속의 평균 오차가 5% 이하를 만족시키는 상관영역 크기를 기준으로 그 이하의 상관영역에 대해서는 최대 오차와 최소 오차간의 차이가 크게 나타나 영상유속계의 측정 불확실성이 큰 것으로 나타났다. 영상유속계의 신뢰수준별 입자밀도 변화에 따른 최소 상관영역의 크기를 분석한 결과 전반적으로 입자밀도가 커짐에 따라 상관영역의 크기는 작아지는 것으로 나타났지만 입자밀도가 작더라도 입자수가 큰 경우에는 신뢰수준을 만족시키는 최소 상관영역의 크기가 감소하는 것으로 나타났다.

Keywords

Acknowledgement

Supported by : 국토교통부

References

  1. Agui, J., and Jimenez, J. (1987). "On the performance of particle tracking." Journal of Fluid Mechanics, Vol. 185, pp. 447-468. https://doi.org/10.1017/S0022112087003252
  2. Aya, S., Fujita, I., and Yagyu, M. (1995). "Field-observation of flood in a river by video image analysis." Annual Journal of hydraulic Engineering, Vol. 39, No. 4, pp. 447-452. (in Japanese) https://doi.org/10.2208/prohe.39.447
  3. Dramais, G., Coz, J.L., Camenen, B., and Hauet, A. (2011). "Advantages of a mobile LSPIV method for measuring flood discharges and improving stage discharge curves." Journal of Hydro-environment Research, Vol. 5, No. 4, pp. 301-312. https://doi.org/10.1016/j.jher.2010.12.005
  4. Forliti, D.J., Strykowski, P.J., and Debatin, K. (2000). "Bias and precision errors of digital particle image velocimetry." Experiments in Fluids, Vol. 28, No. 5, pp. 436-447. https://doi.org/10.1007/s003480050403
  5. Fujita, I., and Komura, S. (1994). "Application of video image analysis for measurements of river-surface flows." Proc. of Hydraulic Engineering, JSCE, Vol. 38, pp. 733-738. https://doi.org/10.2208/prohe.38.733
  6. Fujita, I., and Kunita, Y. (2011). "Application of aerial LSPIV to the 2002 flood of the Yodo River using a helicopter mounted high density video camera." Journal of Hydro-environment Research, Vol. 5, No. 4, pp. 323-331. https://doi.org/10.1016/j.jher.2011.05.003
  7. Hart, D.P. (2000). "PIV error correlation." Experiment in Fluids, Vol. 29, No. 1, pp. 13-22. https://doi.org/10.1007/s003480050421
  8. Hauet, A., Kruger, A., Krajewski, W.F., Bradley, A., Muste, M., and Creutin, J.D. (2008). "Experimental system for real-time discharge estimation using an imagebased method." Journal of Hydrological Engineering, Vol. 13, No. 2, pp. 105-110. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:2(105)
  9. Hu, H., Saga, T., Kobayashi, T., Okamoto, K., and Taniguchi, N. (1998). "Evaluation of the cross correlation method by using PIV standard images." Journal of Visualization, Vol. 1, No. 1, pp. 87-94. https://doi.org/10.1007/BF03182477
  10. Imaichi, K., and Ohmi, K. (1983). "Numerical processing of flow-visualization pictures-measurement of twodimensional vortex flow." Journal of Fluid Mechanics, Vol. 129, pp. 283-311. https://doi.org/10.1017/S0022112083000774
  11. Kantoush, S.A., Schleiss, A.J., Sumi, T., and Murasaki, M. (2011). "LSPIV implementation for environmental flow in various laboratory and field cases." Journal of Hydro-environment Research, Vol. 5, No. 4, pp. 263-276. https://doi.org/10.1016/j.jher.2011.07.002
  12. Kean, R.D., and Adrian, R.J. (1992). "Theory of cross-correlation of PIV images." Applied Scientific Research, Vol. 49, No. 3, pp. 191-215. https://doi.org/10.1007/BF00384623
  13. Kim, S.J., Yu, K.K., and Yoon, B.M. (2011). "Real- time Discharge Measurement of the river using Fixed-type Surface Image Velocimetry." Journal of Korea Water Resources Association, KWRA, Vol. 44, No. 5, pp. 377-388. (in Korean) https://doi.org/10.3741/JKWRA.2011.44.5.377
  14. Kim, Y. (2006). Uncertainty analysis for non-intrusive measurement of river discharge using image velocimetry, Ph.D. thesis, Univ. of Iowa, Iowa City.
  15. Lee, S.J., Choi, J.G., Sung, J.Y., Hwang, T.G., and Doh, D.H. (2005). "Uncertainty analysis od cross-correlation algorithm based on FFT by PIV standard images." Journal of the Korean Society of Visualization, Vol. 3, No. 2, pp. 71-77. (in Korean)
  16. Meselhe, E.A., Peeva, T., and Muste, M. (2004). "Large Scale Particle Image Velocimetry for Low Velocity and Shallow Water Flows." Journal of Hydraulic Engineering, Vol. 130, No. 9, pp. 937-940. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:9(937)
  17. Muste, M., Ho, H.-C., and Kim, D. (2011). "Considerations on direct stream flow measurements using video imagery: Outlook and research needs." Journal of Hydro-environment Research, Vol. 5, No. 4, pp. 289-300. https://doi.org/10.1016/j.jher.2010.11.002
  18. Raffel, M., Willert, C., Wereley, S., and Kompenhans, J. (2007). Particle image velocimetry, a practical guide, Springer.
  19. Roh, Y.S. (2005). Development of river discharge measurement technique using image analysis. Ph.D. thesis, Dept. of Civil and Env. Eng, Myongji University. (in Korean)
  20. Spedding, G.R., and Rignot, J.M. (1993). "performance analysis and application of grid interpolation techniques for fluid flows." Experiment in Fluids, Vol. 15, No. 6, pp. 417-430. https://doi.org/10.1007/BF00191784
  21. Sung, J.Y., Doh, D.H., Lee, S.J., and Hwang, T.G. (2006). "Development of standard experimental apparatus for PIV performance evaluation." Journal of the Korean Society of Visualization, Vol. 4, No. 2, pp. 37-43. (in Korean)
  22. The Visualization Society of Japan (2002). Handbook of Particle Image Velocimetry, Morikita Publication. (in Japanese)
  23. TSI Incorporated. (1999). Particle image velocimetry (PIV): operation manual, Shoreview, Minn.
  24. Willert, C.E., and Gharib, M. (1991). "Digital particle image velocimetry." Experiment in Fluids, Vol. 10, No. 4, pp. 181-193.

Cited by

  1. Development and Evaluation of Automatic Discharges Measurement Technology for Small Stream Monitoring vol.18, pp.6, 2018, https://doi.org/10.9798/KOSHAM.2018.18.6.347