DOI QR코드

DOI QR Code

Electrical and Optical Properties of Al-doped ZnO Films Deposited by Atomic Layer Deposition

Atomic Layer Deposition법에 의한 Al-doped ZnO Films의 전기적 및 광학적 특성

  • An, Ha-Rim (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Baek, Seong-Ho (Energy research Division, Daegu Gyeongbuk Institute of Science & Technology (DGIST)) ;
  • Park, Il-Kyu (Department of Electronic Engineering, Yeungnam University) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 안하림 (서울과학기술대학교 신소재공학과) ;
  • 백성호 (대구경북과학기술원 에너지시스템공학과) ;
  • 박일규 (영남대학교 전자공학과) ;
  • 안효진 (서울과학기술대학교 신소재공학과)
  • Received : 2013.07.29
  • Accepted : 2013.08.16
  • Published : 2013.08.27

Abstract

Al-doped ZnO(AZO) thin films were synthesized using atomid layer deposition(ALD), which acurately controlled the uniform film thickness of the AZO thin films. To investigate the electrical and optical properites of the AZO thin films, AZO films using ALD was controlled to be three different thicknesses (50 nm, 100 nm, and 150 nm). The structural, chemical, electrical, and optical properties of the AZO thin films were analyzed by X-ray diffraction, X-ray photoelectron spectroscopy, field-emssion scanning electron microscopy, atomic force microscopy, Hall measurement system, and UV-Vis spectrophotometry. As the thickness of the AZO thin films increased, the crystallinity of the AZO thin films gradually increased, and the surface morphology of the AZO thin films were transformed from a porous structure to a dense structure. The average surface roughnesses of the samples using atomic force microscopy were ~3.01 nm, ~2.89 nm, and ~2.44 nm, respectively. As the thickness of the AZO filmsincreased, the surface roughness decreased gradually. These results affect the electrical and optical properties of AZO thin films. Therefore, the thickest AZO thin films with 150 nm exhibited excellent resistivity (${\sim}7.00{\times}10^{-4}{\Omega}{\cdot}cm$), high transmittance (~83.2 %), and the best FOM ($5.71{\times}10^{-3}{\Omega}^{-1}$). AZO thin films fabricated using ALD may be used as a promising cadidate of TCO materials for optoelectronic applications.

Keywords

References

  1. T. Minami, Semicond. Sci. Technol., 20, S35 (2005). https://doi.org/10.1088/0268-1242/20/4/004
  2. M. S. Kim, J. KIEEME, 26, 194 (2013).
  3. S. Yun, J. Lee, J. Yang and S. Lim, Phys. B, 405, 413 (2010). https://doi.org/10.1016/j.physb.2009.08.297
  4. R. Jaramillo and S. Ramanathan, Sol. Energy Mater. Sol. Cell., 95, 602 (2011). https://doi.org/10.1016/j.solmat.2010.09.025
  5. H. Agura, A. Suzuki, T. Matsushita, T. Aoki and M. Okuda, Thin Solid Films, 445, 263 (2003). https://doi.org/10.1016/S0040-6090(03)01158-1
  6. S. Y. Kuo, W. C. Chen, F. I Lai, C. P. Cheng, H. C. Kuo, S. C. Wang and W. F. Hsieh, J. Cryst. Growth, 287, 78 (2006). https://doi.org/10.1016/j.jcrysgro.2005.10.047
  7. Z. Baji, Z. Labadi, Z. E. Horvath and I. Barsony, Thin Solid Films, 520, 4703 (2012). https://doi.org/10.1016/j.tsf.2011.10.113
  8. G. Jimenez, E. Comini, M. Ferroni, A. Vomiero and G. Sberveglieri, Mater. Chem. Phys., 124, 694 (2010). https://doi.org/10.1016/j.matchemphys.2010.07.035
  9. M. E. Fragala, G. Malandrino, M. M. Giangregorio, M. Losurdo, G. Bruno, S. Lettieri, L. S. Amato and P. Maddalena, Chem. Vap. Deposition, 15, 327 (2009).
  10. N. P. Dasqupta, S. Neubert, W. Y. Lee, O. Trejo, J. R. Lee and F. B. Prinz, Chem. Mater., 22, 4769 (2010). https://doi.org/10.1021/cm101227h
  11. P. Banerjee, W. J. Lee, K. R. Bae, S. B. Lee and G. W. Rubloff, J. Appl. Phys., 108, 043504 (2010). https://doi.org/10.1063/1.3466987
  12. Y. Geng, Z. Y. Xie, S. S. Xu, Q. Q. Sun, S. J. Ding, H. L. Lu and D. W. Zhang, J. Solid. State. Electrochem., 1, N45 (2012).
  13. Z. Li, T. J. Shi and L. Y. Guo, J. Serb. Chem. Sic., 75, 385 (2010). https://doi.org/10.2298/JSC090410010Z
  14. S. H. Kim, K. B. Shim, J. P. Ahn and C. S. Kim, J. Kor. Ceram. Soc., 45, 167 (2008). https://doi.org/10.4191/KCERS.2008.45.3.167
  15. J. W. Kim and H. B. Kim, J. Kor. Phys. Soc., 59, 2349 (2011). https://doi.org/10.3938/jkps.59.2349
  16. B. Yang, P. Feng, A. Kumar, R.S. Katiyar and M. Achermann, J. Phys. D: Appl. Phys., 42, 195402 (2009). https://doi.org/10.1088/0022-3727/42/19/195402
  17. Y. Fu, H. Du, S. Zhang and W. Huang, Mater. Sci. Eng. A, 403, 25 (2005). https://doi.org/10.1016/j.msea.2005.04.036
  18. X. Yu, J. Ma, F. Ji, Y. Wang, C, Cheng and H. Ma, Appl. Surf. Sci., 245, 310 (2005). https://doi.org/10.1016/j.apsusc.2004.10.022
  19. E. Elangovan, M. P. Singh and K. Ramamurthi, Mater. Sci. Eng. B, 113, 143 (2004). https://doi.org/10.1016/j.mseb.2004.07.072
  20. A. Jain, P. Sagar and R. M. Mehra, Mater Sci-Poland, 25, 1 (2007).
  21. D. J. Lee, H. M. Kim, J. Y. Kwon, H. J. Choi, S. H. Kim, and K. B. Kim, Adv. Func. Mater., 21, 448 (2011). https://doi.org/10.1002/adfm.201001342
  22. J. W. Kim, D. K. Kim and H. B. Kim, J. KIEEME, 24, 177 (2011).
  23. W. J. Jeong and G. C. Park, Sol. Energ Mater. Sol. Cell., 65, 37 (2001). https://doi.org/10.1016/S0927-0248(00)00075-1
  24. S. S. Lin, and J. L. Huang, Ceram. Int., 30, 497 (2004). https://doi.org/10.1016/j.ceramint.2003.08.002
  25. M. N. Islam, B. K. Samantaray, K. L. Chopra, and H. N. Acharya, Sol. Energ Mater. Sol. Cell, 29, 27 (1993). https://doi.org/10.1016/0927-0248(93)90089-L

Cited by

  1. Effect of Al2O3 Inter-Layer Grown on FeCrAl Alloy Foam to Improve the Dispersion and Stability of NiO Catalysts vol.25, pp.8, 2015, https://doi.org/10.3740/MRSK.2015.25.8.391
  2. Research Trends in Powder Materials for Solution-based Transparent Conducting Electrode vol.24, pp.2, 2017, https://doi.org/10.4150/KPMI.2017.24.2.153