DOI QR코드

DOI QR Code

POSET METRICS ADMITTING ASSOCIATION SCHEMES AND A NEW PROOF OF MACWILLIAMS IDENTITY

  • Oh, Dong Yeol (Division of Liberal Arts Hanbat National University)
  • Received : 2012.02.02
  • Published : 2013.09.01

Abstract

It is known that being hierarchical is a necessary and sufficient condition for a poset to admit MacWilliams identity. In this paper, we completely characterize the structures of posets which have an association scheme structure whose relations are indexed by the poset distance between the points in the space. We also derive an explicit formula for the eigenmatrices of association schemes induced by such posets. By using the result of Delsarte which generalizes the MacWilliams identity for linear codes, we give a new proof of the MacWilliams identity for hierarchical linear poset codes.

Keywords

References

  1. E. Bannai and T. Ito, Algebraic Combinatorics. I, Association schemes, The Benjamin/Cummings Publishing Co., Amsterdam, 1984.
  2. R. C. Bose and D. M. Mesner, On linear associative algebras corresponding to association schemes of partially balanced designs, Ann. Math. Statist. 30 (1959), 21-38. https://doi.org/10.1214/aoms/1177706356
  3. R. C. Bose and T. Shimamoto, Classification and analysis of partially balanced incomplete block designs with two associate classes, J. Amer. Statist. Assoc. 47 (1952), 151-184. https://doi.org/10.1080/01621459.1952.10501161
  4. A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-Regular Graphs, Berlin, Springer-Verlag, 1989.
  5. R. A. Brualdi, J. Graves, and K. M. Lawrence, Codes with a poset metric, Discrete Math. 147 (1995), no. 1-3, 57-72. https://doi.org/10.1016/0012-365X(94)00228-B
  6. P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Repts. Suppl. 10 (1976), 134 pp.
  7. P. Delsarte and V. I. Levenshtein, Association schemes and coding theory, IEEE Trans. Inform. Theory 44 (1998), no. 6, 2477-2504. https://doi.org/10.1109/18.720545
  8. S. T. Dougherty and M. M. Skriganov, MacWilliams duality and the Rosenbloom- Tsfasman metric, Moscow Math. J. 2 (2002), no. 1, 81-97.
  9. J. N. Guti'errez and H. Tapia-Recillas, A MacWilliams identity for poset-codes, Congr. Number. 133 (1998), 63-73.
  10. Y. Jang and J. Park, On a MacWilliams identity and a perfectness for a binary linear (n, n − 1, j)-poset code, Discrete Math. 265 (2003), no. 1-3, 85-104. https://doi.org/10.1016/S0012-365X(02)00624-6
  11. D. S. Kim and J. G. Lee, A MacWilliams-type identity for linear codes on weak order, Discrete Math. 263 (2003), no. 1-3, 181-194.
  12. H. K. Kim and D. Y. Oh, A classification of posets admitting the MacWilliams identity, IEEE Trans. Inform. Theory 51 (2005), no. 4, 1424-1431. https://doi.org/10.1109/TIT.2005.844067
  13. R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, Cambridge University Press, Cambridge, 1994.
  14. F. J. MacWilliams and N. J. Sloane, The Theory of Error-Correcting Codes, North- Holland, Amsterdam, 1977.
  15. W. J. Martin and D. R. Stinson, Association schemes for ordered orthogonal arrays and (T,M, S)-nets, Canad. J. Math. 51 (1999), no. 2, 326-346. https://doi.org/10.4153/CJM-1999-017-5
  16. H. Niederreiter, Point sets and sequence with small discrepancy, Monatsh. Math. 104 (1987), no. 4, 273-337. https://doi.org/10.1007/BF01294651
  17. H. Niederreiter, A combinatorial problem for vector spaces over finite fields, Discrete Math. 96 (1991), no. 3, 221-228. https://doi.org/10.1016/0012-365X(91)90315-S
  18. H. Niederreiter, Orthogonal arrays and other combinatorial aspects in the theory of uniform point distributions in unit cubes, Discrete Math. 106/107 (1992), 361-367. https://doi.org/10.1016/0012-365X(92)90566-X
  19. M. Y. Rosenbloom, M. A. Tsfasman, M. Y. Rosenbloom, and M. A. Tsfasman, Codes for m-metric, Probl. Pered. Inf. 33 (1997), 55-63 (Russian); English translation: Probl. Inform. Transm. 33 (1997), 45-52.
  20. M. M. Skigrnov, Coding theory and uniform distibutions, Algebra i Analiz 13 (2001), 191-239 (Russian); English translation: St. Petesburg Math. J. 13 (2002), 301-337.
  21. O. Tamaschke, Zur Theorie der Permutationsgruppen mit regularer Untergruppe. I, Math. Z. 80 (1963), 328-354
  22. O. Tamaschke, Zur Theorie der Permutationsgruppen mit regularer Untergruppe. II, Math. Z. 80 (1963), 443-465.

Cited by

  1. Characterization of Metrics Induced by Hierarchical Posets vol.63, pp.6, 2017, https://doi.org/10.1109/TIT.2017.2691763