DOI QR코드

DOI QR Code

ON OVERRINGS OF GORENSTEIN DEDEKIND DOMAINS

  • Hu, Kui (College of Science Southwest University of Science and Technology) ;
  • Wang, Fanggui (College of Mathematics and Software Science Sichuan Normal University) ;
  • Xu, Longyu (College of Science Southwest University of Science and Technology) ;
  • Zhao, Songquan (College of Science Southwest University of Science and Technology)
  • Received : 2012.09.27
  • Published : 2013.09.01

Abstract

In this paper, we mainly discuss Gorenstein Dedekind do-mains (G-Dedekind domains for short) and their overrings. Let R be a one-dimensional Noetherian domain with quotient field K and integral closure T. Then it is proved that R is a G-Dedekind domain if and only if for any prime ideal P of R which contains ($R\;:_K\;T$), P is Gorenstein projective. We also give not only an example to show that G-Dedekind domains are not necessarily Noetherian Warfield domains, but also a definition for a special kind of domain: a 2-DVR. As an application, we prove that a Noetherian domain R is a Warfield domain if and only if for any maximal ideal M of R, $R_M$ is a 2-DVR.

Keywords

References

  1. F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Grad. Texts in Math. 13, 2nd edition, Springer-Verlag, New York, 1992.
  2. H. Bass, Torsion free and projective modules, Trans. Amer. Math. Soc. 102 (1962), no. 2, 319-327. https://doi.org/10.1090/S0002-9947-1962-0140542-0
  3. S. Bazzoni and L. Salce, Warfield domains, J. Algebra 185 (1996), no. 3, 836-868. https://doi.org/10.1006/jabr.1996.0353
  4. D. Bennis, A note on Gorenstein global dimension of pullback rings, Int. Electron. J. Algebra 8 (2010), 30-44.
  5. D. Bennis and N. Mahdou, Strongly Gorenstein projective, injective, and flat modules, J. Pure Appl. Algebra 210 (2007), no. 2, 437-445. https://doi.org/10.1016/j.jpaa.2006.10.010
  6. D. Bennis and N. Mahdou, A generalization of strongly Gorenstein projective modules, J. Algebra Appl. 8 (2009), no. 2, 219-227. https://doi.org/10.1142/S021949880900328X
  7. D. Bennis and N. Mahdou, Global Gorenstein dimensions, Proc. Amer. Math. Soc. 138 (2010), no. 2, 461- 465.
  8. I. S. Cohen, Commutative rings with restricted minimum condition, Duke Math. J. 17 (1950), 27-42. https://doi.org/10.1215/S0012-7094-50-01704-2
  9. L. Fuchs and L. Salce, Modules over Non-Noetherian Domains, American Mathematical Society, Providence, RI., 2001.
  10. R. W. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
  11. L. Gruson, Criteres de platitude et de projectivite. Techniques de "platification" d'un module, Invent. Math. 13 (1971), 1-89. https://doi.org/10.1007/BF01390094
  12. H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004), no. 1-3, 167-193. https://doi.org/10.1016/j.jpaa.2003.11.007
  13. K. Hu and F. Wang, Some results on Gorenstein Dedekind domains and their factor rings, Comm. Algebra 41 (2013), no. 1, 284-293. https://doi.org/10.1080/00927872.2011.629268
  14. I. Kaplansky, Commutative Rings, Revised edition, Univ. Chicago Press, Chicago, 1974.
  15. M. D. Larsen and P. J. McCarthy, Multiplicative Theory of Ideals, Academic Press, New York, 1971.
  16. N.Mahdou and M. Tamekkante, On (strongly) Gorenstein (semi) hereditary rings, Arab. J. Sci. Eng. 36 (2011), no. 3, 431-440. https://doi.org/10.1007/s13369-011-0047-7
  17. E. Matlis, The two-generator problem for ideals, Michigan Math. J. 17 (1970), 257-265. https://doi.org/10.1307/mmj/1029000474
  18. H. Matsumura, Commutative Ring Theory, Cambridge University Press, New York, 1989.
  19. L. Salce, Warfield domains: module theory from linear algebra to commutative algebra through Abelian groups, Milan J. Math. 70 (2002), 163-185. https://doi.org/10.1007/s00032-002-0005-7
  20. F. Wang, Commutative Rings and Star Operation Theory (in Chinese), Science Press, Beijing, 2006.

Cited by

  1. Quasi-strongly Gorenstein projective modules pp.1793-6829, 2018, https://doi.org/10.1142/S0219498819501822