DOI QR코드

DOI QR Code

ON A RING PROPERTY UNIFYING REVERSIBLE AND RIGHT DUO RINGS

  • Kim, Nam Kyun (Faculty of Liberal Arts and Sciences Hanbat National University) ;
  • Lee, Yang (Department of Mathematics Education Pusan National University)
  • Received : 2012.12.06
  • Published : 2013.09.01

Abstract

The concepts of reversible, right duo, and Armendariz rings are known to play important roles in ring theory and they are independent of one another. In this note we focus on a concept that can unify them, calling it a right Armendarizlike ring in the process. We first find a simple way to construct a right Armendarizlike ring but not Armendariz (reversible, or right duo). We show the difference between right Armendarizlike rings and strongly right McCoy rings by examining the structure of right annihilators. For a regular ring R, it is proved that R is right Armendarizlike if and only if R is strongly right McCoy if and only if R is Abelian (entailing that right Armendarizlike, Armendariz, reversible, right duo, and IFP properties are equivalent for regular rings). It is shown that a ring R is right Armendarizlike, if and only if so is the polynomial ring over R, if and only if so is the classical right quotient ring (if any). In the process necessary (counter)examples are found or constructed.

Keywords

References

  1. D. D. Anderson and V. Camillo, Armendariz rings and Gaussian ring, Comm. Algebra 26 (1998), no. 7, 2265-2272. https://doi.org/10.1080/00927879808826274
  2. D. D. Anderson and V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), no. 6, 2847-2852. https://doi.org/10.1080/00927879908826596
  3. R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), no. 8, 3128-3140. https://doi.org/10.1016/j.jalgebra.2008.01.019
  4. E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470-473. https://doi.org/10.1017/S1446788700029190
  5. H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368. https://doi.org/10.1017/S0004972700042052
  6. V. Camillo and P. P. Nielsen, McCoy rings and zero-divisors, J. Pure Appl. Algebra 212 (2008), no. 3, 599-615. https://doi.org/10.1016/j.jpaa.2007.06.010
  7. P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641-648. https://doi.org/10.1112/S0024609399006116
  8. R. C. Courter, Finite-dimensional right duo algebras are duo, Proc. Amer. Math. Soc. 84 (1982), no. 2, 157-161.
  9. E. H. Feller, Properties of primary noncommutative rings, Trans. Amer. Math. Soc. 89 (1958), 79-91. https://doi.org/10.1090/S0002-9947-1958-0098763-0
  10. K. R. Goodearl, Von Neumann Regular Rings, Pitman, London, 1979.
  11. K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, 1989.
  12. J. M. Habeb, A note on zero commutative and duo rings, Math. J. Okayama Univ. 32 (1990), 73-76.
  13. Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168 (2002), no. 1, 45-52. https://doi.org/10.1016/S0022-4049(01)00053-6
  14. C. Y. Hong, Y. C. Jeon, N. K. Kim, and Y. Lee, The McCoy condition on noncommutative rings, Comm. Algebra 39 (2011), no. 5, 1809-1825. https://doi.org/10.1080/00927872.2010.480952
  15. C. Huh, H. K. Kim, and Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra 167 (2002), no. 1, 37-52. https://doi.org/10.1016/S0022-4049(01)00149-9
  16. C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761. https://doi.org/10.1081/AGB-120013179
  17. N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477-488. https://doi.org/10.1006/jabr.1999.8017
  18. N. K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), no. 1-3, 207-223. https://doi.org/10.1016/S0022-4049(03)00109-9
  19. T.-K. Lee and T.-L. Wong, On Armendariz rings, Houston J. Math. 29 (2003), no. 3, 583-593.
  20. T.-K. Lee and Y. Zhou, Armendariz and reduced rings, Comm. Algebra 32 (2004), no. 6, 2287-2299. https://doi.org/10.1081/AGB-120037221
  21. G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002), no. 3, 311-318. https://doi.org/10.1016/S0022-4049(02)00070-1
  22. G. Marks, A taxonomy of 2-primal rings, J. Algebra 266 (2003), no. 2, 494-520. https://doi.org/10.1016/S0021-8693(03)00301-6
  23. G. Marks, Duo rings and Ore extensions, J. Algebra 280 (2004), no. 2, 463-471. https://doi.org/10.1016/j.jalgebra.2004.04.018
  24. J. Matczuk, Ore extensions over duo ring, J. Algebra 297 (2006), no. 1, 139-154. https://doi.org/10.1016/j.jalgebra.2005.07.016
  25. N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49 (1942), 286-295. https://doi.org/10.2307/2303094
  26. N. H. McCoy, Annihilators in polynomial rings, Amer. Math. Monthly 64 (1957), 28-29.
  27. L. Motais de Narbonne, Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents, In: Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), 71-73, Bib. Nat., Paris, 1982.
  28. P. P. Nielsen, Semi-commutativity and the McCoy condition, J. Algebra 298 (2006), no. 1, 134-141. https://doi.org/10.1016/j.jalgebra.2005.10.008
  29. M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. https://doi.org/10.3792/pjaa.73.14
  30. G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60. https://doi.org/10.1090/S0002-9947-1973-0338058-9
  31. W. Xue, Artinian duo rings and self-dualty, Proc. Amer. Math. Soc. 105 (1989), no. 2, 309-313. https://doi.org/10.1090/S0002-9939-1989-0938916-5

Cited by

  1. MCCOY CONDITION ON IDEALS OF COEFFICIENTS vol.50, pp.6, 2013, https://doi.org/10.4134/BKMS.2013.50.6.1887