DOI QR코드

DOI QR Code

Analysis of Unstable Vibration Modes due to KTX Brake Disc/Pad Interaction

KTX 제동디스크-패드의 상호작용에 의한 불안정 진동모드 해석

  • Goo, Byeong Choon (New transportation Research Department, Korea Railroad Research Institute)
  • Received : 2013.01.25
  • Accepted : 2013.07.30
  • Published : 2013.08.31

Abstract

According to the measured results of KTX brake squeal noise in this study, high level brake noise occurred in a wide frequency range, 100~18,000Hz. To identify the sources of the brake squeal noise, unstable vibration modes due to brake disc/pad interaction were analyzed under various conditions by the finite element method. Complex eigenvalues for a brake unit with a disc and four pads were obtained. It was found that the real parts of the complex eigenvalues, that is, unstable vibration modes, were closely related to friction coefficients, pressure on the brake cylinders, elastic moduli of the components, and other conditions.

KTX 열차가 정거장에서 정차 시 측정한 제동 스퀼소음은 저주파에서부터 18,000Hz의 고주파 영역에 걸쳐 관찰되었다. 제동 스퀼소음이 제동디스크/패드의 상호작용에 의한 불안정 진동모드에 의해 발생한다는 가정 하에 유한요소법을 적용하여 하나의 제동디스크와 4개의 제동패드로 구성된 제동 유니트에 대해 유한요소 모델링을 하고 마찰계수, 마찰면에 작용하는 압력, 마찰재와 백플레이트의 탄성계수 등 여러 파라미터의 특성값을 변경해 가면서 제동 유니트의 불안정 진동모드에 미치는 영향을 해석하고 각 파라미터의 영향을 분석하였다. 해석결과에 의하면 불안정 진동모드는 이러한 변수들과 밀접한 관련이 있음을 알 수 있었다.

Keywords

References

  1. H.S. Kim and etc. (2007) Study on the braking noise reduction of KTX, KORAIL, Report KORI-Technology -Yong-06-06.
  2. M. Eriksson, S. Jacobson (2001) Friction behaviour and squeal generation of disc brakes at low speeds, Proceedings of the Institution of Mechanical Engineers D 215 (D12), pp. 1245-1256. https://doi.org/10.1243/0954407011528789
  3. N.M. Kinkaid, O.M. O'Reilly, P. Papadopoulos (2003) Automotive disc brake squeal, Journal of Sound and Vibration, 267(1), pp. 105-166. https://doi.org/10.1016/S0022-460X(02)01573-0
  4. S.K. Rhee, P.H.S. Tsang, Y.S. Wang (1989) Friction-induced noise and vibration of disc brakes, Wear, 133, pp. 39-45. https://doi.org/10.1016/0043-1648(89)90111-7
  5. X. Lorang, F. Foy-Margiocchi, Q.S Nguyen and P.E. Gautier (2006) TGV disc brake squeal, Journal of Sound and Vibration, 293, pp. 735-746. https://doi.org/10.1016/j.jsv.2005.12.006
  6. D. Brizard, O. Chiello, J.J. Sinou, X. Lorang (2011) Performance of some reduced bases for the stability analysis of a disc/pads system in sliding contact, Journal of Sound and Vibration, 293, pp. 735-746.
  7. G. Fritz, J.J. Sinou, J.M. Duffal, L. Jezequel (2007) Effects of damping on brake squeal coalescence patterns-application on a finite element model, Mechanics Research Communications, 34, pp. 181-190. https://doi.org/10.1016/j.mechrescom.2006.09.012
  8. J.-J. Sinou, G. Fritz, L. Jezequel (2007) The role of damping and definition of the robust damping factor for a self-exciting mechanism with constant friction, Journal of Vibration and Acoustics, 129, pp. 297-306. https://doi.org/10.1115/1.2730536
  9. P. Liu, H. Zheng, C. Cai, Y.Y. Wang, C. Lu, K.H. Ang, G.R. Liu (2007) Analysis of disc brake squeal using the complex eigenvalue method, Applied Acoustics, 68, pp. 603-615. https://doi.org/10.1016/j.apacoust.2006.03.012
  10. S. Oberst, J.C.S. Lai (2010) Numerical methods for simulating brake squeal noise, Proceedings of 20th International Congress on Acoustics, ICA 2010, Sydney, Australia, 2, pp. 1505-1516.
  11. J. Kang (2012) Finite element modelling for the investigation of in-plane modes and damping shims in disc brake squeal, Journal of Sound and Vibration, 331(9), pp. 2190-2202. https://doi.org/10.1016/j.jsv.2011.12.033
  12. H. Festjens, C. Gaël, R. Franck, D. Jean-Luc, L. Remy (2012) Effectiveness of multilayer viscoelastic insulators to prevent occurrences of brake squeal: A numerical study, Applied Acoustics, 73(11), pp.1121-1128. https://doi.org/10.1016/j.apacoust.2012.03.017
  13. ABAQUS Analysis User's manual, Ver. 6.5, Vol. II. 6.3.6.

Cited by

  1. Analysis of Natural Frequencies and Squeal Noise of KTX Brake Unit vol.24, pp.12, 2014, https://doi.org/10.5050/KSNVE.2014.24.12.954