DOI QR코드

DOI QR Code

Study on Penetration Characteristics of Tungsten Cylindrical Penetrator

텅스텐 원형 관통자의 관통특성에 관한 연구

  • Jo, Jong Hyun (Dept. of Mechanical Design Engineering, Chungnam Nat'l Univ.) ;
  • Lee, Young Shin (Dept. of Mechanical Design Engineering, Chungnam Nat'l Univ.) ;
  • Kim, Jae Hoon (Dept. of Mechanical Design Engineering, Chungnam Nat'l Univ.) ;
  • Bae, Yong Woon (Dept. of Mechanical Design Engineering, Chungnam Nat'l Univ.)
  • 조종현 (충남대학교 기계설계공학과) ;
  • 이영신 (충남대학교 기계설계공학과) ;
  • 김재훈 (충남대학교 기계설계공학과) ;
  • 배용운 (충남대학교 기계설계공학과)
  • Received : 2013.02.20
  • Accepted : 2013.06.13
  • Published : 2013.09.01

Abstract

The design of missile require extremely small warheads that must be highly efficient and lethal. The penetration characteristics of each penetrator and the total number of penetrators on the warhead are obvious key factors that influence warhead lethality. The design of the penetrator shape and size are directly related to the space and weight of the warhead. The design of the penetrator L/D was directly related to the space and weight of the warhead. L and D are the length and the diameter of the projectile, respectively. The AUTODYN-3D code was used to study the effect of penetrator penetration. The objective of numerical analysis was to determine the penetration characteristics of penetrator produced by hypervelocity impacts under different initial conditions such as initial velocity, obliquity angle and L/D of penetrator. The residual velocity and residual mass were decreased with increasing initial impact velocity under $L/D{\leq}4$.

미사일 설계에서는 매우 효율적이며 치명적인 극히 작은 탄두를 필요로 한다. 탄두에서 각 관통자의 관통성능과 관통자의 총 개수는 탄두 파괴성능에 영향을 미치는 주요 요인이다. 관통자 L/D 의 설계는 탄두의 공간과 중량에 직접적인 관련되어 있다. L 과 D 는 발사체의 길이와 직경이다. AUTODYN-3D code 가 관통자 관통의 영향을 연구하기 위해 사용되었다. 수치해석의 목적은 초기속도, 경사각도, 관통자의 L/D 와 같은 다양한 초기 조건 아래 초고속 충격에 의해 생성되는 관통자의 관통특성을 확인하는 것이다. $L/D{\leq}4$ 에서의 초기 충격속도 증가는 잔류질량과 잔류속도를 감소시킨다.

Keywords

References

  1. 1963, "The Resistance of Various Metallic Materials to Perforation by Steel Fragments," Ballistic Analysis Laboratory, Johns-Hopkins University, Baltimore, MD, BAL, THOR TR No. 51, Confidential.
  2. Wollmann, E., Hoog, K., Koerber, G. and Wellige, B., 1996, "Performance of Ballistic Terminal Performance at Incidence," Institut Franco-Allemand De Recherches De Daint-Louis, Deutsh-Franzoisches Forschung Instut Saint Louis, ISL, Rl 10/96.
  3. Kim, Y.H., 2010, "Ballistic Missile Defense System : Its Current Status and South Korea's Policy Choice," The Korean Journal of International Relations, Vol. 50, No. 5, pp. 151-164.
  4. Park, J.S., Kang, H.G., Park, D.Y. and Yun, T.G., 2012, "Near Miss Warhead Developments Status for International Ballistic Missle Defense," Proceedings of 2012 conference of the KIMST, pp. 1766-1769.
  5. Lloyd, R.M., 1998, "Conventional Warhead Systems Physics and Engineering Design," Progress in Astronautics and Aeronautics, AIAA Book, Vol. 179.
  6. Lloyd, R.M., 2001, "Physics of Direct Hit and Near Miss Warhead Technology," Progress in Astronautics and Aeronautics, AIAA Book, Vol. 194.
  7. Paulus, G., 2004, "Geschoss mit Erhohter Lateralwirkung (PELE). Eine Theorie der Lateralwirkung Beim Durchschlag Einer Dunnen Platte," ISL-Report R 115/2004.
  8. Zukas, J.A., 1990, editor. High Velocity Impact Dynamics. New York: Wiley.
  9. WWW1.ANSYS.COM, 2011, "ANSYS/AUTODYN- 3D," 12.1 User's Manual, Material Models Chapter.
  10. Kang, P., Im, C.K., Youn, S.K., Lim, J.H. and Hwang, D.S., 2012, "A Study on the Damage of Satellite caused by Hypervelocity Impact with Orbrital Debris," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 40, No. 7, pp. 555-563. https://doi.org/10.5139/JKSAS.2012.40.7.555
  11. Jiang J.-w., Zhang, M., Men, J.-b. and Wang S.-y., 2011, "Study on Fragmentation of PELE against Thin Targets," Journal of Beijing Institute of Technology, Vol.20, No, pp. 168-172.
  12. Jo, J.H. and Lee, Y.S., 2012, "Numerical Simulation of Failure Mechanism of PELE Perforating Thin Target Plates," Trans. Korean Soc. Mech. Eng. A, Vol.36, No.12, pp. 501-508.
  13. Jo, J.H., Lee, Y.S. and Jin, H.L., 2012, "Numerical Simulation of Steel/Kevlar Hydrid Composite Helmet Subjected to Ballistic Impact," Trans. Korean Soc. Mech. Eng. A, Vol.36, No.12, pp. 722-729.
  14. Lee, M., 2001, "A Numerical Comparison of the Ballistic Performance of Unitary and Segmented-Rods Against Stationary and Moving Oblique Plates," International Journal of Impact Engineering, Vol.26, No. 1-10, pp. 399-407. https://doi.org/10.1016/S0734-743X(01)00090-2
  15. Charters, A.C., Menna, T.L. and Piekutowski, A.J., 1990, "Penetration Dynamics of Rods from Direct Ballistic Tests of Advanced Armor Components at 2-3 km/s," International Journal of Impact Engineering Vol.10, pp. 93-106. https://doi.org/10.1016/0734-743X(90)90051-V
  16. Recht, R.F. and Ipson, T.W., 1963, "Ballistic Perforation Dynamics," Trans of ASME, Journal of Applied Mechanics, Vol.30, No 3, pp. 384-390. https://doi.org/10.1115/1.3636566
  17. Paulus, G., 2004, "Geschoss Mit Erhohter Lateralwirkung (PELE). Eine Theorie der Lateralwirkung Beim Durchschlag Einer Dunnen Platte," ISL-Report R 115/2004.
  18. Zukas, J.A., 1990, editor. High Velocity Impact Dynamics. New York: Wiley.

Cited by

  1. Numerical Study on Ricochet Behavior with Inclined Impact of Polycabonate Plates vol.29, pp.4, 2014, https://doi.org/10.14346/JKOSOS.2014.29.4.001
  2. Dispersion Pattern Simulation of Tungsten Impactors According to Mass and Shape of Explosives vol.38, pp.12, 2014, https://doi.org/10.3795/KSME-A.2014.38.12.1325