DOI QR코드

DOI QR Code

A Study on Recent Research Trend in Management of Technology Using Keywords Network Analysis

키워드 네트워크 분석을 통해 살펴본 기술경영의 최근 연구동향

  • Kho, Jaechang (Department of Management of Technology, Sungkyunkwan University) ;
  • Cho, Kuentae (Department of Management of Technology, Sungkyunkwan University) ;
  • Cho, Yoonho (School of Business Administration, Kookmin University)
  • 고재창 (성균관대학교 기술경영학과) ;
  • 조근태 (성균관대학교 기술경영학과) ;
  • 조윤호 (국민대학교 경영학부)
  • Received : 2013.05.23
  • Accepted : 2013.06.19
  • Published : 2013.06.30

Abstract

Recently due to the advancements of science and information technology, the socio-economic business areas are changing from the industrial economy to a knowledge economy. Furthermore, companies need to do creation of new value through continuous innovation, development of core competencies and technologies, and technological convergence. Therefore, the identification of major trends in technology research and the interdisciplinary knowledge-based prediction of integrated technologies and promising techniques are required for firms to gain and sustain competitive advantage and future growth engines. The aim of this paper is to understand the recent research trend in management of technology (MOT) and to foresee promising technologies with deep knowledge for both technology and business. Furthermore, this study intends to give a clear way to find new technical value for constant innovation and to capture core technology and technology convergence. Bibliometrics is a metrical analysis to understand literature's characteristics. Traditional bibliometrics has its limitation not to understand relationship between trend in technology management and technology itself, since it focuses on quantitative indices such as quotation frequency. To overcome this issue, the network focused bibliometrics has been used instead of traditional one. The network focused bibliometrics mainly uses "Co-citation" and "Co-word" analysis. In this study, a keywords network analysis, one of social network analysis, is performed to analyze recent research trend in MOT. For the analysis, we collected keywords from research papers published in international journals related MOT between 2002 and 2011, constructed a keyword network, and then conducted the keywords network analysis. Over the past 40 years, the studies in social network have attempted to understand the social interactions through the network structure represented by connection patterns. In other words, social network analysis has been used to explain the structures and behaviors of various social formations such as teams, organizations, and industries. In general, the social network analysis uses data as a form of matrix. In our context, the matrix depicts the relations between rows as papers and columns as keywords, where the relations are represented as binary. Even though there are no direct relations between papers who have been published, the relations between papers can be derived artificially as in the paper-keyword matrix, in which each cell has 1 for including or 0 for not including. For example, a keywords network can be configured in a way to connect the papers which have included one or more same keywords. After constructing a keywords network, we analyzed frequency of keywords, structural characteristics of keywords network, preferential attachment and growth of new keywords, component, and centrality. The results of this study are as follows. First, a paper has 4.574 keywords on the average. 90% of keywords were used three or less times for past 10 years and about 75% of keywords appeared only one time. Second, the keyword network in MOT is a small world network and a scale free network in which a small number of keywords have a tendency to become a monopoly. Third, the gap between the rich (with more edges) and the poor (with fewer edges) in the network is getting bigger as time goes on. Fourth, most of newly entering keywords become poor nodes within about 2~3 years. Finally, keywords with high degree centrality, betweenness centrality, and closeness centrality are "Innovation," "R&D," "Patent," "Forecast," "Technology transfer," "Technology," and "SME". The results of analysis will help researchers identify major trends in MOT research and then seek a new research topic. We hope that the result of the analysis will help researchers of MOT identify major trends in technology research, and utilize as useful reference information when they seek consilience with other fields of study and select a new research topic.

최근 경제 패러다임의 변화로 인해 기업이 글로벌 경쟁우위 및 미래 성장동력 확보하기 위해서는 기술과 경영을 통합적으로 이해할 수 있는 학제적 지식을 바탕으로 기술연구의 동향을 파악하고 융합기술 및 유망기술 예측하여 지속적 혁신, 핵심역량 강화, 핵심기술 보유, 기술 융합 등을 통해 새로운 가치를 창출할 필요가 있다. 따라서 본 연구는 기술경영관련 연구의 거시적인 흐름을 분석하기 위해 동시단어 분석기반의 계량서지학적 방법론을 사용하였다. 즉, 최근 10년 동안 기술경영분야의 주요 해외 저널에 게재된 논문의 키워드를 수집한 다음, 빈도 분석, 초기 키워드 네트워크의 구조 분석, 시간이 지남에 따른 새로 생성된 키워드의 선호적 연결 및 성장 분석, 전체 네트워크에 대한 컴포넌트 분석 및 중심성 분석을 수행하였다. 이를 통해 기술경영분야의 논문에 대한 구체적인 연구 주제를 파악할 수 있고, 이들 간의 관계를 파악함으로써, 학제적 연구와 통섭을 위한 구체적인 연구주제들의 조합을 제시할 수 있다. 본 연구결과를 살펴보면 다음과 같다. 첫째, 논문 별 키워드는 1개~23개의 분포를 지니고 있으며, 평균적으로 논문 당 4.574개의 키워드가 있다. 또한 키워드 중 90%가 10년 동안 3번 이하로 사용되었다. 특히 1번만 사용된 키워드는 약 75%의 비중을 차지하고 있음을 확인하였다. 둘째, 키워드 네트워크는 좁은 세상 네트워크 및 척도 없는 네트워크의 특징을 따르고 있음을 확인하였다. 특히 기술경영관련 논문에 사용된 키워드 중 소수의 키워드의 독점화 경향이 높음을 확인할 수 있었다. 셋째, 선호적 연결 및 성장 분석을 통해 기술경영분야의 키워드는 시간이 지남에 따라 선호적 연결을 통한 생존과 소멸 과정에 의해 부익부 빈익빈 현상이 고착되고 있고 있음을 확인하였다. 또한 신규 키워드의 선호적 연결 정도 분석을 통해 신규 연구분야 또는 새로운 연구영역을 창출할 가능성이 있는 키워드 관련 연구 주제에 대한 관심이 시간이 지남에 따라 증가하다가 일정 시점이 지나면 감소함을 확인하였다. 넷째, 컴포넌트 분석 및 중심성 분석을 통해 기술경영관련 연구 동향을 확인하였다. 특히 중심성 분석을 통해 Innovation(혁신), R&D(연구개발), Patent(특허), Forecast(예측), Technology transfer(기술이전), Technology(기술), SME(중소기업) 등의 키워드가 연결중심성, 매개중심성, 근접중심성이 높음을 확인하였다. 본 연구의 분석결과는 기술경영의 연구 동향, 타 학문과의 통섭 및 신규 연구주제 선정 시 참고할 수 있는 유용한 정보로 활용될 수 있다.

Keywords

References

  1. Albert, R. and A. L. Barabasi, "Statistical Mechanics of Complex Networks," Reviews of Modern Physics, Vol.74, No.1(2002), 47-97. https://doi.org/10.1103/RevModPhys.74.47
  2. Alberth, S., "Forecasting Technology Costs via the Experience Curve-Myth or Magic?," Technological Forecasting and Social Change, Vol.75, No.7(2008), 952-983. https://doi.org/10.1016/j.techfore.2007.09.003
  3. Alencar, M. S. M., A. L.Porter, and A. M. S. Antunes, "Nanopatenting Patterns in Relation to Product Life Cycle," Technological Forecasting and Social Change, Vol.74, No. 9(2007), 1661-1680. https://doi.org/10.1016/j.techfore.2007.04.002
  4. Amorim, S., J. P. Barthelemy and C. Ribeiro, "Clustering and Clique Partitioning : Simulated Annealing and Tabu Search Approaches," Journal of Classification, Vol.9, No.2(1992), 17 -41. https://doi.org/10.1007/BF02618466
  5. Andersen, P. D., B. H. Jørgensen, L. Lading, and B. Rasmussen, "Sensor Foresight-Technology and Market," Vol.24, No.4(2004), 311-320. https://doi.org/10.1016/S0166-4972(02)00072-X
  6. Anderson, T., R. Fare, S. Grosskopf, L. Inman, and X. Song, "Further Examination of Moore's Law with Data Envelopment Analysis," Technological Forecasting and Social Change, Vol.69, No.5(2002), 465-477. https://doi.org/10.1016/S0040-1625(01)00190-1
  7. Anderson, T. R., T. U. Daim, and J. Kim, "Technology forecasting for wireless communication," Technovation, Vol.28, No.9(2008), 602-614. https://doi.org/10.1016/j.technovation.2007.12.005
  8. Banuls, V. A. and J. L. Salmeron, "Foresighting Key Areas in the Information Technology Industry," Technovation, Vol.28, No.3(2008), 103-111. https://doi.org/10.1016/j.technovation.2007.05.006
  9. Barabasi, A. L. and R. Albert, "Emergence of Scaling in Random Networks," Science, Vol.286, No.5439 (1999), 509-512. https://doi.org/10.1126/science.286.5439.509
  10. Barabasi, A. L., R. Albert, and H. Jeong, "Scale-free Characteristics of Random Networks : the Topology of the World-Wide Web," Physica A : Statistical Mechanics and its Applications, Vol.281, No.1-4(2000), 69-77. https://doi.org/10.1016/S0378-4371(00)00018-2
  11. Bengisu, M. and R. Nekhili, "Forecasting Emerging Technologies with the Aid of Science and Technology Databases," Technological Forecasting and Social Change, Vol.73, No.7(2006), 835 -844. https://doi.org/10.1016/j.techfore.2005.09.001
  12. Breiger, R., S. Boorman, and P. Arabie, "An Algorithm for Clustering Relational Data with Applications to Social Network Analysis and Comparison with Multi-dimensional Scaling," Journal of Mathematical Psychology, Vol.12, No.3(1975), 328-383. https://doi.org/10.1016/0022-2496(75)90028-0
  13. Borch, K. and B. Rasmussen, "Commercial use of GM Crop Technology : Identifying the Drivers Using Life Cycle Methodology in a Technology Foresight Framework," Technological Forecasting and Social Change, Vol.69, No. 8(2002), 765-780. https://doi.org/10.1016/S0040-1625(01)00164-0
  14. Borch, K. and B. Rasmussen, "Refining the Debate on GM Crops Using Technological Foresight-the Danish Experience," Technological Forecasting and Social Change, Vol.72, No.5(2005), 549-566. https://doi.org/10.1016/j.techfore.2004.05.003
  15. Boretos, G. P., "The Future of the Global Economy," Technological Forecasting and Social Change, Vol.76, No.3(2009), 316-326. https://doi.org/10.1016/j.techfore.2008.06.003
  16. Boretos, G. P., "The Future of the Mobile Phone Business," Technological Forecasting and Social Change, Vol.74, No.3(2007), 331-340. https://doi.org/10.1016/j.techfore.2005.11.005
  17. Buchanan, M., Nexus : Small Worlds and the Groundbreaking Theory of Networks, W.W. Norton, New York, 2002.
  18. Burt, R. S., Structure 4.1 Reference Manual, Columbia University, New York, 1991.
  19. Chang, P. C., N. T. Tsou, B. J. C. Yuan, and C. C. Huang, "Development Trends in Taiwan's Opto-electronics Industry," Technovation, Vol.22, No.3(2002), 161-173. https://doi.org/10.1016/S0166-4972(01)00008-6
  20. Chang, P. C., C. P. Wang, B. J. C. Yuan, and K. T. Chuang, "Forecast of Development Trends in Taiwan's Machinery Industry," Technological Forecasting and Social Change, Vol.69, No.8 (2002), 781-802. https://doi.org/10.1016/S0040-1625(00)00117-7
  21. Chang, S. C., H. C. Lai, and H. C. Yu, "A Variable P Value Rolling Grey Forecasting Model for Taiwan Semiconductor Industry Production," Technological Forecasting and Social Change, Vol.72, No.5(2005), 623-640. https://doi.org/10.1016/j.techfore.2003.09.002
  22. Cho, Y. H. and I. H. Kim, "Predicting the Performance of Recommender Systems through Social Network Analysis and Artificial Neural Network," Journal of Intelligence and Information Systems, Vol.16, No.4(2010), 59-172.
  23. Choi, I. Y. and J. K. Kim, "Product Network Analysis to Analyze the Purchase Behavior of Customers," Journal of The Korean Operations Research and Management Science Society, Vol.34, No.4(2009), 57-72.
  24. Choi, J. H., H. S. Kim, and N. G. Im., "Keyword Network Analysis for Technology Forecasting," Journal of Intelligence and Information Systems, Vol.17, No.4(2011), 227-240.
  25. Christodoulos, C., C. Michalakelis, and D. Varoutasm, "On the Combination of Exponential Smoothing and Diffusion Forecasts : An Application to Broadband Diffusion in the OECD Area," Technological Forecasting and Social Change, Vol.78, No.1(2011), 163-170. https://doi.org/10.1016/j.techfore.2010.08.007
  26. Chu, C. P. and J. G. Pan, "The Forecasting of the Mobile Internet in Taiwan by Diffusion Model," Technological Forecasting and Social Change, Vol.75, No.7(2008), 1054-1067. https://doi.org/10.1016/j.techfore.2007.11.012
  27. Czaplicka-Kolarz, K., K. Sta?czyk, and K. Kapusta, "Technology Foresight for a Vision of Energy Sector Development in Poland till 2030. Delphi Survey as an Element of Technology Foresighting," Technological Forecasting and Social Change, Vol.76, No.3(2009), 327-338. https://doi.org/10.1016/j.techfore.2008.05.007
  28. Dalkey, N. C., Delphi, The RAND Corporation, Santa Monica, Calif., 1967.
  29. Dalkey, N. C. and O. Helmer, "An Experimental Application of the Delphi Method to the Use of Experts," Management Science, Vol.9, No.3(1963), 458-467. https://doi.org/10.1287/mnsc.9.3.458
  30. Du Preez, G. T. and C. W. I. Pistorius, "Analyzing Technological Threats and Opportunities in Wireless Data Services,"Technological Forecasting and Social Change, Vol.70, No.1(2003), 1-20. https://doi.org/10.1016/S0040-1625(02)00253-6
  31. De Miranda Santo, M., G. M. Coelho, D. M. dos Santos, and L. F. Filho, "Text Mining as a Valuable Tool in Foresight Exercises : A Study on Nanotechnology," Technological Forecasting and Social Change, Vol.73, No.8(2006), 1013-1027. https://doi.org/10.1016/j.techfore.2006.05.020
  32. Eggers, F. and F. Eggers, "Where Have All the Flowers Gone? Forecasting Green Trends in the Automobile Industry with a Choice-based Conjoint Adoption Model," Technological Forecasting and Social Change, Vol.78, No.1 (2011), 51-62. https://doi.org/10.1016/j.techfore.2010.06.014
  33. Frank, O. and F. Harary, "Cluster Inference by Using Transitivity Indices in Empirical Graphs," Journal of the American Statistical Association, Vol.77, No.380(1982), 835-840. https://doi.org/10.1080/01621459.1982.10477895
  34. He, J. and M. Hosein Fallah, "Is Inventor Network Structure a Predictor of Cluster Evolution?," Technological Forecasting and Social Change, Vol.76, No.1(2009), 91-106. https://doi.org/10.1016/j.techfore.2008.03.020
  35. Hsu, L. C. and C. H. Wang, "Forecasting the Output of Integrated Circuit Industry Using a Grey Model Improved by the Bayesian Analysis," Technological Forecasting and Social Change, Vol.74, No.6(2007), 843-853. https://doi.org/10.1016/j.techfore.2006.02.005
  36. Hsu, P. H., C. H. Wang, J. Z. Shyu, and H. C. Yu, "A Litterman BVAR Approach for Production Forecasting of Technology Industries," Technological Forecasting and Social Change, Vol.70, No.1(2003), 67-82. https://doi.org/10.1016/S0040-1625(01)00142-1
  37. Huang, C. Y. and G. H. Tzeng, "Multiple Generation Product Life Cycle Predictions Using a Novel Two-stage Fuzzy Piecewise Regression Analysis Method," Technological Forecasting and Social Change, Vol.75, No.1(2008), 12-31. https://doi.org/10.1016/j.techfore.2007.07.005
  38. Jung, J. H., "Futures Forecasting Methdology : Theory and Practice," Country Economy, October(2006), 118-125.
  39. Kajikawa, Y. and Y. Takeda, "Citation Network Analysis of Organic LEDs," Technological Forecasting and Social Change, Vol.76, No.8 (2009), 1115-1123. https://doi.org/10.1016/j.techfore.2009.04.004
  40. Kajikawa, Y., J. Yoshikawa, Y. Takeda, and K. Matsushima, "Tracking Emerging Technologies in Energy Research : Toward a Roadmap for Sustainable Energy," Technological Forecasting and Social Change, Vol.75, No.6(2008), 771-782. https://doi.org/10.1016/j.techfore.2007.05.005
  41. Kang, H. J., M. J. Um, and D. M. Kim, "A Study on Forecast of the Promising Fusion Technology by US Patent Analysis," Journal of Technology Innovation, Vol.14, No.3(2006), 93-116. https://doi.org/10.1080/19761597.2006.9668620
  42. Kim, J. K., I. Y. Choi, H. K. Kim, and N. H. Kim, "Social Network Analysis to Analyze the Purchase Behavior Of Churning Customers and Loyal Customers," Korean Management Science Review, Vol.26, No.1(2009), 183-196.
  43. Kim M. S. and Y. Park, "The Changing Pattern of Industrial Technology Linkage Structure of Korea : Did the ICT Industry Play a Role in the 1980s and 1990s?," Technological Forecasting and Social Change, Vol.76, No.5 (2009), 688-699. https://doi.org/10.1016/j.techfore.2008.03.009
  44. Kim, Y. H., Social Network Analysis, Pakyoungsa, 2003.
  45. Kim, Y. H., Y. J. Kim, and Y. S. Kim, "The Structue of Production and Diffusion of Knowledge in Korean Communication Studies," Korean Journal of Journalism and Communication Studies, Vol.52, No.1(2008), 117-140.
  46. Kostoff, R. N., "Science and Technology Innovation," Technovation, Vol.19, No.10(1999), 593-604. https://doi.org/10.1016/S0166-4972(99)00084-X
  47. Kostoff, R. N. and E. Geisler, "Strategic Management and Implementation of Textual Data Mining in Government Organizations," Technology Analysis and Strategic Management, Vol.11, No.4(1999), 493-525. https://doi.org/10.1080/095373299107302
  48. Kuusi, O. and M. Meyer, "Technological Generalizations and Leitbilder-the Anticipation of Technological Opportunities," Technological Forecasting and Social Change, Vol.69, No.6 (2002), 625-639. https://doi.org/10.1016/S0040-1625(02)00182-8
  49. Ilonen, J., J. K. Kamarainen, K., Puumalainen, S. Sundqvistb, and H. Kalviainen, "Toward Automatic Forecasts for Diffusion of Innovations,"Technological Forecasting and Social Change, Vol.73, No.2(2006), 182-198.
  50. Lee, C., J. Jeon, and Y. Park, "Monitoring Trends of Technological Changes Based on the Dynamic Patent Lattice : A Modified Formal Concept Analysis Approach," Technological Forecasting and Social Change, Vol.78, No.4 (2011), 690-702. https://doi.org/10.1016/j.techfore.2010.11.010
  51. Lee, C. Y., J. D. Lee, and Y. Kim, "Demand Forecasting for New Technology with a Short History in a Competitive Environment : the Case of the Home Networking Market in South Korea," Technological Forecasting and Social Change, Vol.75, No.1(2008), 91-106. https://doi.org/10.1016/j.techfore.2006.12.001
  52. Lee, J., Y. Cho, J. D. Lee, and C. Y. Lee, "Forecasting Future Demand for Large-screen Television Sets Using Conjoint Analysis with Diffusion Model," Technological Forecasting and Social Change, Vol.73, No.4(2006), 362-376. https://doi.org/10.1016/j.techfore.2004.12.002
  53. Lehmann, S., B. Lautrup, and A. D. Jackson, "Citation Networks in High Energy Physics," Physical Review E, Vol.68, No.2(2003), 026113-1-026113-8. https://doi.org/10.1103/PhysRevE.68.026113
  54. Lin, C. T. and S. Y. Yang, "Forecast of the Output Value of Taiwan's Opto-electronics Industry Using the Grey Forecasting Model," Technological Forecasting and Social Change, Vol.70, No.2(2003), 177-186. https://doi.org/10.1016/S0040-1625(01)00191-3
  55. Linton, J., "Ranking of Technology and Innovation Management Journals," Technovation, Vol.26, No.3(2006), 285-287. https://doi.org/10.1016/j.technovation.2006.01.002
  56. Mackay, M. M. and M. Metcalfe, "Multiple Method Forecasts for Discontinuous Innovations," Technological Forecasting and Social Change, Vol.69, No.3(2002), 221-232. https://doi.org/10.1016/S0040-1625(01)00143-3
  57. Mishra, S., S. G. Deshmukh, and P. Vrat, "Matching of Technological Forecasting Technique to a Technology," Technological Forecasting and Social Change, Vol.69, No.1(2002), 1-27. https://doi.org/10.1016/S0040-1625(01)00123-8
  58. Mao, M. and E. C. Chirwa, "Application of Grey Model GM(1, 1) to Vehicle Fatality Risk Estimation," Technological Forecasting and Social Change, Vol.73, No.5(2006), 588-605. https://doi.org/10.1016/j.techfore.2004.08.004
  59. National Information Society Agency, Future Research White Paper 2011, 2011.
  60. No, H. J. and Y. Park, "Trajectory Patterns of Technology Fusion : Trend Analysis and Taxonomical Grouping in Nanobiotechnology," Technological Forecasting and Social Change, Vol.77, No.1(2010), 63-75. https://doi.org/10.1016/j.techfore.2009.06.006
  61. Oner, M. A. and O. Saritas, "A Systems Approach to Policy Analysis and Development Planning : Construction Sector in the Turkish 5-year Development Plans," Technological Forecasting and Social Change, Vol.72, No.7(2005), 886-911. https://doi.org/10.1016/j.techfore.2004.11.002
  62. Pritchard, A., "Statistical Bibliography or Bibliometrics," Journal of Documentation, Vol.25, No.4(1969), 348-349.
  63. Tijssen, R. J. W., "A Quantitative Assessment of Interdisciplinary Structures in Science and Technology : Co-classification Analysis of Energy Research," Research Policy, Vol.21, No.1(1992), 27-44. https://doi.org/10.1016/0048-7333(92)90025-Y
  64. Pilkingtona, A. and T. Teichertb, "Management of Technology : Themes, Concepts and Relationships," Technovation, Vol.26, No.3(2006), 288-299. https://doi.org/10.1016/j.technovation.2005.01.009
  65. Rikkonen, P. and P. Tapio, "Future Prospects of Alternative Agro-based Bioenergy Use in Finland-Constructing Scenarios with Quantitative and Qualitative Delphi Data," Technological Forecasting and Social Change, Vol.76, No.7(2009), 978-990. https://doi.org/10.1016/j.techfore.2008.12.001
  66. Ronde, P., "Delphi Analysis of National Specificities in Selected Innovative Areas in Germany and France," Technological Forecasting and Social Change, Vol.70, No.5(2003), 419-448. https://doi.org/10.1016/S0040-1625(02)00305-0
  67. Saritas, O. and J. Aylen, "Using Scenarios for Roadmapping : The Case of Clean Production," Technological Forecasting and Social Change, Vol.77, No.7(2010), 1061-1075. https://doi.org/10.1016/j.techfore.2010.03.003
  68. Shen, Y. C., S. H. Chang, G. T. R. Lin, and H. C. Yu, "A Hybrid Selection Model for Emerging Technology," Technological Forecasting and Social Change, Vol.77, No.1(2010), 151-166. https://doi.org/10.1016/j.techfore.2009.05.001
  69. Seidman, S. B. and B. L. Foster, "A Note on the Potential for Genuine Cross-fertilization between Anthropology and Mathematics," Social Networks, Vol.1, No.1(1978), 65-72. https://doi.org/10.1016/0378-8733(78)90013-8
  70. Shin, J. and Y. Park, "Brownian Agent-based Technology Forecasting," Technological Forecasting and Social Change, Vol.76, No.8(2009), 1078-1091. https://doi.org/10.1016/j.techfore.2009.04.001
  71. Son, D. W., Social Network Analysis, Kyungmoonsa, 2002.
  72. Song, S. S., "The Place and Problems of Liberal Education for Engineers as Consilience Education," Journal of Engineering Education Research, Vol.15, No.1(2012), 18-25. https://doi.org/10.18108/jeer.2012.15.1.18
  73. Svenfelt, A., R. Engstrom, and O. Svane, "Decreasing Energy Use in Buildings by 50% by 2050-A Backcasting Study Using Stakeholder Groups," Technological Forecasting and Social Change, Vol.78, No.5(2011), 785-796. https://doi.org/10.1016/j.techfore.2010.09.005
  74. Vivanco-Aranda, M., F. J. Mojica, and F. J. Martinez-Cordero, "Foresight Analysis of Tilapia Supply Chains (Sistema Producto) in Four States in Mexico : Scenarios and Strategies for 2018," Technological Forecasting and Social Change, Vol.78, No.3(2011), 481-497. https://doi.org/10.1016/j.techfore.2010.05.005
  75. Wagner, C. S. and L. Leydesdorff, "Network Structure, Self-organization, and the Growth of International Collaboration in Science," Research Policy, Vol.34, No.10(2005), 1608-1618. https://doi.org/10.1016/j.respol.2005.08.002
  76. Wang, M. Y. and W. T. Lan, "Combined Forecast Process : Combining Scenario Analysis with the Technological Substitution Model," Technological Forecasting and Social Change, Vol.74, No.3(2007), 357-378. https://doi.org/10.1016/j.techfore.2005.08.002
  77. Wasserman, S. and K. Faust, Social Network Analysis : Methods and Application, Cambridge University Press, New York, 1994.
  78. Watts, D. J., Small Worlds, Princeton University Press, Princeton, New Jersey, 1999.
  79. Winebrake, J. J. and B. P. Creswick, "The Future of Hydrogen Fueling Systems for Transportation : An Application of Perspective-based Scenario Analysis Using the Analytic Hierarchy Process," Technological Forecasting and Social Change, Vol.70, No.4(2003), 359-384. https://doi.org/10.1016/S0040-1625(01)00189-5
  80. Yildirim, N. and H. Ansal, "Foresighting FLOSS (Free/Libre/Open Source Software) from a Developing Country Perspective : The Case of Turkey," Technovation, Vol.31, No.12(2011), 666-678.
  81. Yoon, B. G. and Y. T. Park, "Development of New Technology Forecasting Algorithm:Hybrid Approach for Morphology Analysis and Conjoint Analysis of Patent Information," IEEE Transactions on Engineering Management, Vol.54, No.3(2007), 588-599. https://doi.org/10.1109/TEM.2007.900796
  82. Youn, Y. S. and S. B. Chae, Introduction to Complex System, Samsung Economic Research Institute, 2007.

Cited by

  1. Research Trend Analysis Using Bibliographic Information and Citations of Cloud Computing Articles: Application of Social Network Analysis vol.20, pp.1, 2014, https://doi.org/10.13088/jiis.2014.20.1.195
  2. Global Research Trends on Geospatial Information by Keyword Network Analysis vol.23, pp.1, 2015, https://doi.org/10.12672/ksis.2015.23.1.069
  3. An Analysis of IT Trends Using Tweet Data vol.21, pp.1, 2015, https://doi.org/10.13088/jiis.2015.21.1.143
  4. Social Network Analysis on Mapping the Knowledge Structure of Dementia Research vol.19, pp.2, 2017, https://doi.org/10.17079/jkgn.2017.19.2.69
  5. Research Trends in Global Cruise Industry Using Keyword Network Analysis vol.38, pp.6, 2014, https://doi.org/10.5394/KINPR.2014.38.6.607
  6. A Study on the Determinants of Patent Citation Relationships among Companies : MR-QAP Analysis vol.19, pp.4, 2013, https://doi.org/10.13088/jiis.2013.19.4.021
  7. A Study on the Application Method of Munition's Quality Information based on Big Data vol.17, pp.6, 2016, https://doi.org/10.5762/KAIS.2016.17.6.315
  8. An Investigation of a Sensibility Evaluation Method Using Big Data in the Field of Design -Focusing on Hanbok Related Design Factors, Sensibility Responses, and Evaluation Terms- vol.40, pp.6, 2016, https://doi.org/10.5850/JKSCT.2016.40.6.1034
  9. Trend of Research and Industry-Related Analysis in Data Quality Using Time Series Network Analysis vol.5, pp.6, 2016, https://doi.org/10.3745/KTSDE.2016.5.6.295
  10. A Study on the Research Trends to Flipped Learning through Keyword Network Analysis vol.28, pp.3, 2016, https://doi.org/10.13000/JFMSE.2016.28.3.872
  11. Mapping the Knowledge Structure of Sport Pedagogy Field vol.26, pp.3, 2013, https://doi.org/10.24985/kjss.2015.26.3.445
  12. 사회복지학 연구동향에 관한 키워드 네트워크 분석 - 「한국사회복지학」 게재논문(1979-2015)을 중심으로 - vol.68, pp.2, 2013, https://doi.org/10.20970/kasw.2016.68.2.008
  13. 2010~2015년 사회네트워크분석(SNA) 방법 활용 국내외 영재교육 연구동향 분석 vol.26, pp.2, 2013, https://doi.org/10.9722/jgte.2016.26.2.347
  14. 키워드 네트워크 분석을 통한 도서관마케팅 연구 경향 분석 - 우리나라와 국외연구의 비교분석 - vol.50, pp.3, 2013, https://doi.org/10.4275/kslis.2016.50.3.383
  15. Understanding the Academic Research Extent of Forest Educationin South Korea vol.29, pp.3, 2013, https://doi.org/10.17965/kjee.2016.29.3.297
  16. 텍스트 마이닝을 이용한 혁신 분야의 국외 연구 동향 분석 vol.24, pp.4, 2013, https://doi.org/10.14383/sime.2016.24.4.249
  17. 2010년부터 2015년까지 국내 과학영재교육의 연구동향 분석 : 문헌분석 대 사회네트워크분석 vol.40, pp.3, 2013, https://doi.org/10.21796/jse.2016.40.3.267
  18. 간호행정학회지 게재논문의 연구동향 분석(2013~2015년): 텍스트 네트워크 분석의 적용 vol.23, pp.1, 2013, https://doi.org/10.11111/jkana.2017.23.1.101
  19. Analysis of Research Trends in the Journal of Speech-Language and Hearing Disorders by Using a Semantic Network Analysis: 1998-2015 vol.26, pp.1, 2013, https://doi.org/10.15724/jslhd.2017.26.1.012
  20. 사회연결망 분석을 활용한 나노기술 연구동향 국가간 비교분석: 탄소나노소재분야 중심 vol.26, pp.2, 2013, https://doi.org/10.7735/ksmte.2017.26.2.172
  21. 방탄헬멧 기술분야 키워드에 대한 네트워크 분석 vol.18, pp.4, 2013, https://doi.org/10.5762/kais.2017.18.4.311
  22. A Analysis of Research Trends on “Korea-China relations” in China: A Comparison of ‘Keyword-Network’ Jiang Zemin and Hu Jintao Era vol.56, pp.None, 2013, https://doi.org/10.26585/chlab.2017..56.007
  23. 논문데이터 분석을 통한 인공지능 분야 주요 연구 동향 분석 vol.15, pp.5, 2013, https://doi.org/10.14400/jdc.2017.15.5.225
  24. 대규모 기업집단 내부거래 연결망의 정태적·동태적 분석 vol.43, pp.4, 2013, https://doi.org/10.7232/jkiie.2017.43.4.288
  25. A Study on the Research Network Structure of the Maritime Sector Using Social Network Analysis vol.33, pp.3, 2013, https://doi.org/10.37059/tjosal.2017.33.3.623
  26. 키워드 네트워크 분석을 활용한 생태자산 연구 경향 분석 vol.26, pp.5, 2013, https://doi.org/10.14249/eia.2017.26.5.303
  27. Deriving technology intelligence from patents: Preposition-based semantic analysis vol.12, pp.1, 2013, https://doi.org/10.1016/j.joi.2018.01.001
  28. The study on the research trend about Europe ports: focus on Baltic Sea using Keyword network vol.16, pp.2, 2013, https://doi.org/10.14400/jdc.2018.16.2.139
  29. The study on the research trend about Europe ports: focus on Baltic Sea using Keyword network vol.16, pp.2, 2013, https://doi.org/10.14400/jdc.2018.16.2.139
  30. 빅데이터 연구 논문의 주제 분야 연관관계 분석: 동시 인용 관계를 적용하여 vol.35, pp.1, 2013, https://doi.org/10.3743/kosim.2018.35.1.013
  31. 항만공사의 마케팅 촉진전략 평가에 관한 연구 vol.34, pp.1, 2013, https://doi.org/10.38121/kpea.2018.03.34.1.19
  32. 19 Years after the Launch of Korean Strategic Management Society Information vol.21, pp.2, 2013, https://doi.org/10.17786/jsm.2018.21.2.001
  33. An Analysis on Contents of the Pedagogy Examination for Secondary-School Teacher’s Employment using Text Mining & Semantic Network Analysis vol.28, pp.3, 2013, https://doi.org/10.21024/pnuedi.28.3.201809.1
  34. 소셜 네트워크 분석(SNA)을 이용한 실과(기술·가정)교육 분야 연구 동향 분석 vol.56, pp.6, 2013, https://doi.org/10.6115/fer.2018.043
  35. 공급사슬 리스크 관리 연구동향 분석: 네트워크 분석을 중심으로 vol.23, pp.6, 2013, https://doi.org/10.9723/jksiis.2018.23.6.125
  36. Research Trend in Dementia Based on Physical Activity: Using Keyword Network Analysis vol.28, pp.1, 2013, https://doi.org/10.15857/ksep.2019.28.1.11
  37. 텍스트 네크워크 분석을 이용한 임상간호연구 게재논문의 연구동향 분석: 2000년부터 2017년까지 vol.25, pp.1, 2013, https://doi.org/10.22650/jkcnr.2019.25.1.80
  38. 토픽 모델링을 이용한 컴퓨팅 사고력 관련 연구 동향 분석 vol.23, pp.6, 2013, https://doi.org/10.14352/jkaie.2019.23.6.607
  39. SNA분석을 통한 AEO 인증제도 연구동향 분석에 관한 연구 vol.18, pp.2, 2013, https://doi.org/10.14400/jdc.2020.18.2.047
  40. 특허 정보를 이용한 기업의 급진적 혁신에 관한 실증연구 vol.21, pp.10, 2013, https://doi.org/10.5762/kais.2020.21.10.471