DOI QR코드

DOI QR Code

Effect of FTO Expression and Polymorphism on Fat Deposition in Suzhong Pigs

  • Fu, Yanfeng (Institute of Animal Science, Jiangsu Academy of Agricultural Sciences) ;
  • Li, Lan (College of Veterinary Medicine, China Agricultural University) ;
  • Ren, Shouwen (Institute of Animal Science, Jiangsu Academy of Agricultural Sciences)
  • 투고 : 2013.01.16
  • 심사 : 2013.05.26
  • 발행 : 2013.10.01

초록

Fat mass and obesity associated gene (FTO) plays an important role in appetite control and energy consumption in human and mice. In order to examine FTO expression influence on fat deposition in Suzhong pigs, FTO mRNA expression was detected in 16 tissues by RT-PCR, FTO protein expression was detected in 5 tissues by western blot, and association of FTO polymorphism with meat quality traits was analyzed in Suzhong populations with 714 records. RT-PCR results revealed that FTO mRNA was expressed in all sixteen tissues with significant differences (p<0.05), expression in backfat was significantly higher than that of any other tissue (p<0.05), and expression in longissimus dorsi muscle had the second highest significance level (p<0.05). Western blot results demonstrated that FTO protein was highly expressed in backfat and longissimus dorsi muscle. Furthermore, FTO mRNA and protein expression in tissues of high-fat pigs was significantly higher than that of low-fat pigs (p<0.05), suggesting FTO expression had advantageous effects on fat deposition. FTO polymorphism results evidenced that at A227G locus, G allele seemed to have advantageous effects on fat deposition, indicating it could be a significant candidate gene for improving pork quality in Suzhong pigs.

키워드

참고문헌

  1. Cui, J., Y. Zeng, H. Wang, W. Chen, J. Du, Q. Chen, Y. Hu, and L. Yang. 2011. The effects of DGAT1 and DGAT2 mRNA expression on fat deposition in fatty and lean breeds of pig. Livest. Sci. 140:292-296. https://doi.org/10.1016/j.livsci.2011.04.007
  2. DeVol, D., F. McKeith, P. J. Bechtel, J. Novakofski, R. Shanks, and T. Carr. 1988. Variation in composition and palatability traits and relationships between muscle characteristics and palatability in a random sample of pork carcasses. J. Anim. Sci. 66:385-395.
  3. Dina, C., D. Meyre, S. Gallina, E. Durand, A. Körner, P. Jacobson, L. M. S. Carlsson, W. Kiess, V. Vatin, and C. Lecoeur. 2007. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat. Genet. 39:724-726. https://doi.org/10.1038/ng2048
  4. Du, Z. Q., B. Fan, X. Zhao, R. Amoako, and M. F. Rothschild. 2008. Association analyses between type 2 diabetes genes and obesity traits in pigs. Obesity 17:323-329.
  5. Fischer, J., L. Koch, C. Emmerling, J. Vierkotten, T. Peters, J. C. Brüning, and U. Rüther. 2009. Inactivation of the Fto gene protects from obesity. Nature 458:894-898. https://doi.org/10.1038/nature07848
  6. Fontanesi, L., E. Scotti, L. Buttazzoni, S. Dall'Olio, A. Bagnato, D. P. Lo Fiego, R. Davoli, and V. Russo. 2010. Confirmed association between a single nucleotide polymorphism in the FTO gene and obesity-related traits in heavy pigs. Mol. Biol. Rep. 37:461-466. https://doi.org/10.1007/s11033-009-9638-8
  7. Fontanesi, L., E. Scotti, L. Buttazzoni, R. Davoli, and V. Russo. 2009. The porcine fat mass and obesity associated (FTO) gene is associated with fat deposition in Italian Duroc pigs. Anim. Genet. 40:90-93. https://doi.org/10.1111/j.1365-2052.2008.01777.x
  8. Frayling, T. M., N. J. Timpson, M. N. Weedon, E. Zeggini, R. M. Freathy, C. M. Lindgren, J. R. B. Perry, K. S. Elliott, H. Lango, and N. W. Rayner. 2007. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316:889-894. https://doi.org/10.1126/science.1141634
  9. Fu, Y., J. Fu, Q. Ren, X. Chen, and A. Wang. 2012a. Expression of Eph A molecules during swine embryo implantation. Mol. Biol. Rep. 39:2179-2185. https://doi.org/10.1007/s11033-011-0966-0
  10. Fu, Y., J. Fu, and A. Wang. 2012b. Association of EphA4 polymorphism with swine reproductive traits and mRNA expression of EphA4 during embryo implantation. Mol. Biol. Rep. 39:2689-2696. https://doi.org/10.1007/s11033-011-1023-8
  11. Gerbens, F., D. De Koning, F. Harders, T. Meuwissen, L. Janss, M. Groenen, J. Veerkamp, J. Van Arendonk, and M. Te Pas. 2000. The effect of adipocyte and heart fatty acid-binding protein genes on intramuscular fat and backfat content in Meishan crossbred pigs. J. Anim. Sci. 78:552-559.
  12. Hausman, G. and S. Poulos. 2004. Recruitment and differentiation of intramuscular preadipocytes in stromal-vascular cell cultures derived from neonatal pig semitendinosus muscles. J. Anim. Sci. 82:429-437.
  13. Hu, Z. L. and J. M. Reecy. 2007. Animal QTLdb: beyond a repository. Mamm. Genome 18:1-4. https://doi.org/10.1007/s00335-006-0105-8
  14. Kloting, N., D. Schleinitz, K. Ruschke, J. Berndt, M. Fasshauer, A. Tönjes, M. Schon, P. Kovacs, M. Stumvoll, and M. Bluher. 2008. Inverse relationship between obesity and FTO gene expression in visceral adipose tissue in humans. Diabetologia 51:641-647. https://doi.org/10.1007/s00125-008-0928-9
  15. Kouba, M., M. Bonneau, and J. Noblet. 1999. Relative development of subcutaneous, intermuscular, and kidney fat in growing pigs with different body compositions. J. Anim. Sci. 77:622-629.
  16. Livak, K. and T. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta] CT method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  17. Lord, E., B. Murphy, J. Desmarais, S. Ledoux, D. Beaudry, and M. Palin. 2006. Modulation of peroxisome proliferator-activated receptor $\delta$ and $\gamma$ transcripts in swine endometrial tissue during early gestation. Reproduction 131:929-942. https://doi.org/10.1530/rep.1.00657
  18. Madsen, M. B., M. M. Birck, M. Fredholm, and S. Cirera. 2009. Expression studies of the obesity candidate gene FTO in pig. Anim. Biotechnol. 21:51-63. https://doi.org/10.1080/10495390903381792
  19. Mandard, S., M. Müller, and S. Kersten. 2004. Peroxisome proliferator-activated receptor a target genes. Cell. Mol. Life Sci. 61:393-416. https://doi.org/10.1007/s00018-003-3216-3
  20. Niu, B., L. Ye, F. Li, C. Deng, S. Jiang, M. Lei, and Y. Xiong. 2009. Identification of polymorphism and association analysis with reproductive traits in the porcine RNF4 gene. Anim. Reprod. Sci. 110:283-292. https://doi.org/10.1016/j.anireprosci.2008.01.020
  21. Olszewski, P., R. Fredriksson, A. Olszewska, O. Stephansson, J. Alsio, K. Radomska, A. Levine, and H. Schioth. 2009. Hypothalamic FTO is associated with the regulation of energy intake not feeding reward. BMC Neurosci. 10:129-140. https://doi.org/10.1186/1471-2202-10-129
  22. Pan, G., Y. Fu, B. Zuo, Z. Ren, D. Xu, M. Lei, R. Zheng, and Y. Z. Xiong. 2010. Molecular characterization, expression profile and association analysis with fat deposition traits of the porcine APOM gene. Mol. Biol. Rep. 37:1363-1371. https://doi.org/10.1007/s11033-009-9518-2
  23. Sebert, S., M. Hyatt, L. Chan, M. Yiallourides, H. Fainberg, N. Patel, D. Sharkey, T. Stephenson, S. Rhind, and R. Bell. 2010. Influence of prenatal nutrition and obesity on tissue specific fat mass and obesity-associated (FTO) gene expression. Reproduction 139:265-274. https://doi.org/10.1530/REP-09-0173
  24. Sambrook, J. and D. W. Russell. 2001. Molecular cloning: a laboratory manual. Cold spring harbor laboratory press.
  25. Schmittgen, T. and K. Livak. 2008. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3:1101-1108. https://doi.org/10.1038/nprot.2008.73
  26. Shen, Y., A. Lookene, L. Zhang, and G. Olivecrona. 2010. Site-directed mutagenesis of apolipoprotein CII to probe the role of its secondary structure for activation of lipoprotein lipase. J. Biol. Chem. 285:7484-7492. https://doi.org/10.1074/jbc.M109.022046
  27. Sun, L., S. Yu, H. Wang, B. Fan, and B. Liu. 2012. NUDT6, the FGF-2's antisense gene, showed associations with fat deposition related traits in pigs. Mol. Biol. Rep. 39:4119-4126. https://doi.org/10.1007/s11033-011-1194-3
  28. Tang, S., D. Sun, J. Ou, Y. Zhang, and G. Xu. 2010. Evaluation of the IGFs (IGF1 and IGF2) genes as candidates for growth, body measurement, carcass, and reproduction traits in Beijing You and Silkie chickens. Anim. Biotechnol. 21:104-113. https://doi.org/10.1080/10495390903328090
  29. Timpson, N. J., P. M. Emmett, T. M. Frayling, I. Rogers, A. T. Hattersley, M. I. McCarthy, and G. Davey Smith. 2008. The fat mass-and obesity-associated locus and dietary intake in children. Am. J. Clin. Nutr. 88:971-978.
  30. Van Wijk, H., D. Arts, J. Matthews, M. Webster, B. Ducro, and E. Knol. 2005. Genetic parameters for carcass composition and pork quality estimated in a commercial production chain. J. Anim. Sci. 83:324-333.
  31. Van Wijk, H., B. Dibbits, E. Baron, A. Brings, B. Harlizius, M. Groenen, E. Knol, and H. Bovenhuis. 2006. Identification of quantitative trait loci for carcass composition and pork quality traits in a commercial finishing cross. J. Anim. Sci. 84:789-799.
  32. Wardle, J., C. Llewellyn, S. Sanderson, and R. Plomin. 2009. The FTO gene and measured food intake in children. Int. J. Obes. 33:42-45. https://doi.org/10.1038/ijo.2008.174
  33. Wong, M., and J. Medrano. 2005. Real-time PCR for mRNA quantitation. Biotechniques 39:75-85. https://doi.org/10.2144/05391RV01
  34. Wood, J., M. Enser, A. Fisher, G. Nute, P. Sheard, R. Richardson, S. Hughes, and F. Whittington. 2008. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 78:343-358. https://doi.org/10.1016/j.meatsci.2007.07.019

피인용 문헌

  1. Tissue Distribution of Porcine FTO and Its Effect on Porcine Intramuscular Preadipocytes Proliferation and Differentiation vol.11, pp.3, 2016, https://doi.org/10.1371/journal.pone.0151056
  2. The FTO Gene Is Associated with Growth and Omega-3/-6 Ratio in Asian Seabass vol.20, pp.5, 2018, https://doi.org/10.1007/s10126-018-9831-7
  3. Differential expression of six genes in fat-type Hungarian Mangalica and other pigs vol.59, pp.2, 2013, https://doi.org/10.5194/aab-59-259-2016
  4. Analysis of FTO and PLIN2 Polymorphisms in Relation to Carcass and Meat Quality Traits in Pigs vol.19, pp.1, 2019, https://doi.org/10.2478/aoas-2018-0053
  5. Excessive BCAA regulates fat metabolism partially through the modification of m 6 A RNA methylation in weanling piglets vol.17, pp.1, 2013, https://doi.org/10.1186/s12986-019-0424-x