DOI QR코드

DOI QR Code

7수준 직교배열을 적용한 터보팬 엔진 설계점 최적화

Optimization of Turbofan Engine Design Point by using Seven Level Orthogonal Array

  • Kim, Myungho (4-Advanced Propulsion Technology Center, Agency foe Defence Development) ;
  • Kim, Youil (4-Advanced Propulsion Technology Center, Agency foe Defence Development) ;
  • Lee, Kwangki (Consulting Team, VP KOREA) ;
  • Hwang, Kiyoung (4-Advanced Propulsion Technology Center, Agency foe Defence Development) ;
  • Min, Seongki (4-Advanced Propulsion Technology Center, Agency foe Defence Development)
  • 투고 : 2012.11.27
  • 심사 : 2013.03.25
  • 발행 : 2013.08.01

초록

설계 최적화를 위해서 설계자는 우선적으로 설계영역 전반에 걸쳐 정확한 정보를 획득하고, 설계영역 탐색을 실시한 후에 최적화를 실시해야 한다. 최근에 설계영역 탐색을 우선적으로 실행하기 위하여 실험계획법과 반응표면모델에 최적화를 적용하는 통합설계 프레임워크의 적용이 산업체 전반으로 일반화되고 있다. 본 연구에서는 터보팬 엔진 설계점 최적화를 위하여, 설계영역의 정보를 조밀하게 얻을 수 있으며 통계학적인 직교성과 균형성을 모두 만족하는 7 수준 직교배열을 생성한 후에 반응표면모델을 구축한다. 구축된 반응표면모델에 전역 최적값을 찾기 위하여 다목적 유전자알고리즘을 적용하여 주어진 제한조건을 만족하는 최적값을 찾아 GasTurb 결과와 검증을 수행한다.

For design optimization, engineers should require the accurate information of design space and then explore the design space and carry out optimization. Recently, the total design framework, based on design of experiments and optimization, is widely used in industry areas to explore the design space above all. For optimizing turbofan engine design point, the response surface model is constructed by using the 7 level orthogonal array which satisfies the statistical uniformity and orthogonality and gets the dense design space information. The multi-objective genetic algorithm is used to find the optimal solution within the given constraints for finding global optimal one in response surface model. The optimal solution from response surface model is verified with GasTurb simulation result.

키워드

참고문헌

  1. Kurzke, J., GasTurb 10 Manual, 2004.
  2. Phadke, M. S., Quality Engineering Using Robust Design, Prentice Hall, Englewood Cliffs, 1989.
  3. Taguchi, G., Konishi, S., Taguchi Methods Orthogonal Arrays and Linear Graphs: Tools for Quality Engineering, Amer. Supplier Inst, 1987.
  4. Nair, V. N., "Taguchi's Parameter Design: a Panel Discussion," Technometrics, No. 34, pp. 127-161, 1992.
  5. Owen, A., "Orthogonal Arrays for Computer Experiments, Integration, and Visualization," Statistica Sinica, Vol. 2, pp. 439-452, 1992.
  6. Myers, Montgomery, Response Surface Methodology - Process and Product Optimization Using Designed Experiments, John Wiley & Sons, New York, 1995.
  7. SAS Institute, JMP v9 User's Guide, 2011.
  8. Phoenix Integration, ModelCenter v10.1 User's Guide, 2012.
  9. Holland, J. H., Adaptation in natural and artificial systems, University of Michigan Press, 1975.
  10. Fonseca, C.M. and Fleming, P.J., "Multiobjective optimization and multiple constraint handling with evolutionary algorithms - Part I: a unified formulation," IEEE Transactions on Systems, Man and Cybernetics, Part A, Vol. 28, No. 1, pp. 26-37, 1998. https://doi.org/10.1109/3468.650319
  11. Fonseca, C.M. and Fleming, P.J., "Multiobjective optimization and multiple constraint handling with evolutionary algorithms - Part II: application example," IEEE Transactions on Systems, Man and Cybernetics, Part A, Vol. 28, No. 1, pp. 38-47, 1998. https://doi.org/10.1109/3468.650320