DOI QR코드

DOI QR Code

Fabrication of Networked Carbon Nanofiber Mats, and Analysis of Their Thermal Properties

네트워크화된 탄소나노섬유 매트의 제조 및 열전도 특성 평가

  • Kim, Jina (Department of Materials Science and Engineering, Seoul National University) ;
  • Na, Won-Jin (Department of Materials Science and Engineering, Seoul National University) ;
  • Yu, Woong-Ryeol (Department of Materials Science and Engineering, Seoul National University)
  • 김지나 (서울대학교 재료공학부) ;
  • 나원진 (서울대학교 재료공학부) ;
  • 유웅열 (서울대학교 재료공학부)
  • Received : 2013.05.13
  • Accepted : 2013.07.19
  • Published : 2013.08.31

Abstract

The main purpose of this research was to fabricate carbon nanofiber (CNF) mats with a high thermal conductivity, by electrospinning of poly(acrylonitrile) (PAN) and subsequent thermal treatment. To improve the thermal conductivity of the CNF mats, isotropic and mesophase pitches were co-axially electrospun with a PAN shell. The mesophase pitch in this research was prepared by thermal treatment from isotropic pitch, and the structural properties were evaluated by Raman spectroscopy and X-ray diffraction analysis. The contact resistance between CNFs in mats was effectively reduced by wetting of the PAN shell using ethanol and the formation of a networked structure during thermal processing. The thermal conductivity of the resulting CNF mats was measured by a laser flash method, and a significantly improved thermal conductivity was obtained for isotropic pitch-PAN CNF mats. This is attributed to a networked structure, a well-developed carbon structure, and a reduced contact resistance.

Keywords

References

  1. A. A. Balandin, "Better Computing Through CPU Cooling", IEEE Spectrum, 2009, October, 29-33.
  2. J. Norley, J. J. W. Tzeng, G. Getz, J. Klug, and B. Fedor, "The Development of a Natural Graphite Heat-spreader", Seventeenth Annual IEEE Symposium : Semiconductor Thermal Measurement and Management, pp.107-110, Piscataway, NJ, 2001.
  3. S. Murthy, Y. Joshi, and W. Nakayama, "Two-Phase Heat Spreaders Utilizing Microfabricated Boiling Enhancement Structures", Heat Transfer Engineering, 2004, 25, 26-36. https://doi.org/10.1080/01457630490262218
  4. H. Yan, "Electrospinning-derived Carbon/graphite Nanofiber Mats from a Polyimide-mesophase Pitch Blend Precursor for Flexible Thermal Management Thin Films", Doctoral Thesis, Univ. of Akron, Akron, OH, USA, 2011.
  5. D. J. Yang, S. G. Wang, Q. Zhang, P. J. Sellin, and G. Chen, "Thermal and Electrical Transport in Multi-walled Carbon Nanotubes", Phys Lett A, 2004, 329, 207-213. https://doi.org/10.1016/j.physleta.2004.05.070
  6. D. H. Reneker and I. Chun, "Nanometer Diameter Fibers of Polymer, Produced by Electrospinning", Nanotechnology, 1996, 7, 216-223. https://doi.org/10.1088/0957-4484/7/3/009
  7. P. Morgan, "Precursors for Carbon Fiber Manufacture. In Carbon Fibers and Their Composites", Taylor & Francis Group, LLC: Boca Raton, FL, 1985, pp.121-184.
  8. K. Naito, J.-M. Yang, Y. Xu, and Y. Kagawa, "Enhancing the Thermal Conductivity of Polyacrylonitrile- and Pitch-based Carbon Fibers by Grafting Carbon Nanotubes on Them", Carbon, 2010, 48, 1849-1857. https://doi.org/10.1016/j.carbon.2010.01.031
  9. B. Nysten, L. Piraux, and J.-P. Issi, "Thermal Conductivity of Pitch-derived Fibres", J Phys D: Appl Phys, 1985, 18, 1307-1310. https://doi.org/10.1088/0022-3727/18/7/016
  10. T. Matsumoto, "Mesophase Pitch and Its Carbon Fibers", Pure and Applied Chemistry, 1985, 57, 1553-1562. https://doi.org/10.1351/pac198557111553
  11. J. G. Lavin, D. R. Boyington, J. Lahijani, B. Nystem, and J. P. Issi, "The Correlation of Thermal Conductivity with Electrical Resistivity in Mesophase Pitch-based Carbon Fiber", Carbon, 1993, 31, 1001-1002. https://doi.org/10.1016/0008-6223(93)90207-Q
  12. N. C. Gallego, D. D. Edie, B. Nysten, J. P. Issi, J. W. Treleaven, and G. V. Deshpande, "The Thermal Conductivity of Ribbon-shaped Carbon Fibers", Carbon, 2000, 38, 1003-1010. https://doi.org/10.1016/S0008-6223(99)00203-1
  13. N.-N. Bui, B.-H. Kim, K. S. Yang, M. E. Dela Cruz, and J. P. Ferraris, "Activated Carbon Fibers from Electrospinning of Polyacrylonitrile/pitch Blends" Carbon, 2009, 47, 2538-2539. https://doi.org/10.1016/j.carbon.2009.05.007
  14. I. Chun, D. H. Reneker, H. Fong, X. Fang, J. Deitzel, N. B. Tan, and K. Kearns, "Carbon Nanofibers from Polyacrylonitrile and Mesophase Pitch", J Adv Mater, 1999, 31, 36-41.
  15. P. Scherrer, "Bestimmung der Grobe und der inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen", Mathematisch-Physikalische Klasse, 1918, 2, 98-100.
  16. Z. Zhou, C. Lai, L. Zhang, Y. Qian, H. Hou, D. H. Reneker, and H. Fong, "Development of Carbon Nanofibers from Aligned Electrospun Polyacrylonitrile Nanofiber Bundles and Characterization of Their Microstructural, Electrical, and Mechanical Properties", Polymer, 2009, 50, 2999-3006. https://doi.org/10.1016/j.polymer.2009.04.058
  17. A. G. Nasibulin, A. Ollikainen, A. S. Anisimov, D. P. Brown, P. V. Pikhitsa, S. Holopainen, J. S. Penttila, P. Helisto, J. Ruokolainene, M. Choi, and E. I. Kauppinen, "Integration of Single-walled Carbon Nanotubes into Polymer Films by Thermo-compression", Chem Eng J, 2008, 136, 409-413. https://doi.org/10.1016/j.cej.2007.04.033
  18. A. G. Nasibulin, A. Kaskela, K. Mustonen, A. S. Anisimov, V. Ruiz, S. Kivisto, S. Rackauskas, M. Y. Timmermans, M. Pudas, B. Aitchison, M. Kauppinen, D. P. Brown, O. G. Okhotnikov, and E. I. Kauppinen, "Multifunctional Free- Standing Single-Walled Carbon Nanotube Films", ACS Nano, 2011, 5, 3214-3221. https://doi.org/10.1021/nn200338r
  19. A. V. Goponenko, H. Hou, and Y. A. Dzenis, "Avoiding Fusion of Electrospun 3,3,4,4-biphenyltetracarboxylic dianhydride-4,4-oxydianiline Copolymer Nanofibers during Conversion to Polyimide", Polymer, 2011, 52, 3776-3782. https://doi.org/10.1016/j.polymer.2011.06.023
  20. L. Yao, T. W. Haas, A. Guiseppi-Elie, G. L. Bowlin, D. G. Simpson, and G. E. Wnek, "Electrospinning and Stabilization of Fully Hydrolyzed Poly(Vinyl Alcohol) Fibers", Chem Mater, 2003, 15, 1860-1864. https://doi.org/10.1021/cm0210795
  21. P. Taepaiboon, U. Rungsardthong, and P. Supaphol, "Effect of Cross-linking on Properties and Release Characteristics of Sodium Salicylate-loaded Electrospun Poly(vinyl alcohol) Fibre Mats", Nanotechnology, 2007, 18, 175102/1-175102/11.
  22. K. Yamamoto, "Molecular-dynamics Simulations of Thermal Transport in Carbon Nanotubes with Structural Defects", e-J Surf Sci Nanotechnol, 2006, 4, 239-243. https://doi.org/10.1380/ejssnt.2006.239
  23. T. D. Ositinskaya, A. P. Podoba, and S. V. Shmegera, "Influence of Point Defects on the Thermal Conductivity of Diamond Single Crystals: State of the Art", Diamond and Related Materials, 1993, 2, 1500-1504. https://doi.org/10.1016/0925-9635(93)90020-3