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Abstract : Digital image processing is a process to analyze a large volume of information on digital

images. In this study, Artemia hatching rate was measured by automatically classifying and counting cysts

and larvae based on color imaging data from cyst hatching experiments using an image processing tech-

nique. The Artemia hatching rate estimation consists of a series of processes; a step to convert the scanned

image data to a binary image data, a process to detect objects and to extract their shape information in the

converted image data, an analysis step to choose an optimal discriminant function, and a step to recognize

and classify the objects using the function. The function to classify Artemia cysts and larvae is optimally

estimated based on the classification performance using the areas and the plan-form factors of the detected

objects. The hatching rate using the image data obtained under the different experimental conditions was

estimated in the range of 34-48%. It was shown that the maximum difference is about 19.7% and the aver-

age root-mean squared difference is about 10.9% as the difference between the results using an automatic

counting (this study) and a manual counting were compared. This technique can be applied to biological

specimen analysis using similar imaging information.
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1. Introduction

Brine shrimp (Artemia sp.) belongs to the phylum

Arthropoda, class Crustacea. These organisms are widely

used as live food for larvae in crustacean and marine

finfish farming (Treece 2000). Furthermore, Artemia have

been utilized as an in vivo model species for biological

responses (mainly for the hatching rate) corresponding to

increased carbon dioxide concentrations in the ocean as

well as biological toxicological experiments as it only

takes 24 hr for larvae to hatch from cysts (Brix et al. 2006;

Onocha et al. 2011; Salma et al. 2012). Hatching rate is

usually calculated by manual counting aliquots from a

hatching tank (Salma et al. 2012). However, the number

of observed samples must be large and experiments

should be repeated many times to decrease the margin of

error of such biological experiments. But, the manual

counting of additional specimens requires increased time

and cost (Bates and Tiersch 1997). Therefore, automatic

hatching rate estimations using recently developed imaging

analysis techniques are needed to decrease costs and

increase accuracy. 

Digital imaging processing (DIP) using photo and

video image data have been utilized in various marine

fields to measure the distribution of chlorophyll-a concen-

tration and shoreline changes, as well as wave height

(Kim and Cho 2005; Kim et al. 2008). 

These digital imaging analysis techniques have also

been used to identify phytoplankton (Tsuji and Nishikawa

1984; Brown et al. 1989), to count cysts and larvae numbers

(Been et al. 1996; Friedland et al. 2005), to analyze the

morphological information of marine organisms (length

and area) (Cardin and Friedland 1999; Thorsen and

Kjesbu 2001; Brillon et al. 2005; Rideout et al. 2005), and*Corresponding author. E-mail : hycho@kiost.ac 
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to measure the shape parameters of fish's otoliths. 

The major field of the DIP application is the automatic

counting of the cyst, larva, and plankton numbers that

have relatively simple classification criteria and require

repetition. However, image analysis basically recognize

the objects and only provide shape information for the

recognized objects (or color information); preliminary

information is needed to develop criteria extraction processes

for classifying different objects or connecting objects to

information from recognized objects.

Therefore, criteria for classifying cysts and larvae from

recognized objects in Artemia imaging data are proposed

in the present study. 

As a result, Artemia cysts and larvae were classified

and counted faster and easier to measure hatching rates. 

2. Materials and methods

Materials

Hatching rate was measured utilizing an image processing

technique that automatically classified the cysts and larvae

and counted them on color imaging data from an Artemia

cyst hatching experiment. The imaging data were obtained

using the following procedures. Artemia cysts were added

to 1.8 L bio-assay tanks (seawater salinity 30.0 PSU; air

injection volume 1,000 cm
3
/min) rectangular plastic water

bath and incubated at room temperature for 46 hours. The

amount of Artemia cysts was 0.121-0.137 g (mean, 0.129

± 0.005 g). The temperature of the hatching water bath

was maintained at 26.5-26.9
o
C (mean, 26.7

o
C). The

unhatched cyst and hatched larvae imaging data were

collected using a renovated scanner after cyst shells

floating on the surface were removed. A scanner (Epson

Perfection V700 PHOTO model) was used with a resolution

of 2,400 dpi. Because the rectangular box area was

scanned, the pixel size of the scanned image area was

20,400 × 28,079, and the actual size of a pixel was

approximately 0.01 mm (Fig. 1).

As indicated in Fig. 1, the scanned color image data of

Artemia includes various kinds of significant objects, such

as unhatched cysts (eggs), hatching cysts, larvae in the

early and late stages of hatching larvae, and various cysts-

larvae touching each other. There are also many meaningless

objects, such as small point objects, slightly-long line

objects, and different kinds of unidentifiable objects

having indistinct boundaries. 

Methods

Three steps were used to estimate the Artemia hatching

rate. In the first step, the scanned original image was

converted to a gray scale image. The gray scale image

was converted to a black and white binary image to

separate the objects from the background gray scale

image. Then, the image was converted into a final binary

image to remove meaningless small objects and create

boundaries using a morphological calculation technique.

Image processing was carried out using the MATLAB

Digital Image Processing Toolbox (MathWorks 2012) and

a basic image processing technique (Sonka et al. 1999;

Gonzalez and Wintz 1987) that included various image

analysis functions. The detailed procedures were as follows.

(1) Convert the color image to a gray scale image (In

cases the separation was performed based on object

recognition and shape but not color, a black and white

image was analyzed during the separation procedure).

(2) Convert the image data to binary image data by

dividing the background and the objects (black and white

binary image) using the widely-used Otsu method.

(3) Obtain a final image by conducting boundary image

processing to remove the boundary and object noise.

 

 The second step was a specimen analysis procedure to

extract a partial image (a type of specimen image) from

the entire image at random. A partial image can be regarded

as a specimen (sample) and its size is about 0.1% of the

full image. First, the morphological parameters of the

detected objects were obtained in the final binary image

data converted from the sample image. The objects of the

partial image are also manually classified as the various

cyst and larval groups. Based upon the automatically

Fig. 1. Original color image data (full and zoomed par-

tial images). The size of the zoomed partial image

covers about 0.1% of the full image. Mixture of

objects including cysts, larvae, and other mean-

ingless objects 
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extracted parameters and manually classified grouping

information of the objects, the optimal discriminant functions

were determined for the partial image data set. This

functions are used to separate the objects as the unhatched

cysts and the larvae in the early hatching stage (cyst shell

was attached), the young (partially hatched) and completely

hatched larval stage (cyst shell was not present), and the

others. The other objects include the cysts and larvae

touching each other and meaningless objects not removed

in the first step. The objects of the cysts and larva

touching each other were classified as the 3 different

groups (touching by cysts only, both cysts and larvae, and

larvae only). All detected objects were classified by a pre-

determined linear discriminant equation and then the

difference caused by the object discrimination was analyzed.

In the third step, the black and white binary image

conversion drawn in the first step and the classification

criteria in the second step were applied to an entire image.

In this stage, the entire image can be regarded as the

population. Every detected object in the image were

classified based upon the discriminant function and a

hatching rate was computed by counting the object

numbers of the subdivided groups of the unhatched cysts,

hatching cysts, and larvae in the early and late hatching

stages. The hatching rate was calculated as follows.

Where, 

N = number of recognized (detected) objects in total

image area

Nu = number of objects that were not relevant to

Artemia hatching or that were unidentified among the

recognized objects

No = number of objects touching each other among the

recognized objects 

No_egg = number of cysts among the objects touching

each other (computed from the classification of the No

objects)

No_larvae = number of larvae among the objects touching

each other (computed from the classification of the No

objects; No is approximately half of the No_egg +

No_larvae)

N_egg = number of cysts among the recognized individual

objects

N_larvae = number of larvae among the recognized

individual objects

Therefore, the following equation was established:

N − Nu − No = N_egg + N_larvae (number of eggs and

larvae excluding eggs and larvae touching each other) 

TN_egg = total number of recognized eggs among the

individual and touching objects = N_egg + No_egg

TN_larvae = total number of recognized larvae among

the individual and touching objects = N_larvae +

No_larvae

Hatching rate (RH) was calculated with the following

equation:

RH = TN_larave/(TN_egg + TN_larvae) (1)

In general, the hatching cysts were counted as the

N_larvae even though they could be classified as partially

hatched larvae.

The hatching rate was calculated using the detailed cyst

and larvae classification information. Limitations and

errors while establishing the criteria to classify the cyst

and larvae hatching steps occurred due to the continuous

nature of hatching but were omitted from the present

study. 

3. Results and discussion

Conversion of image data (first step)

The results of the first step of the image analysis were

related to the computational efficiency of the analysis.

The effects of each step in detail were examined using a

sample partial image. In general, an analysis was performed

by converting the color image to a gray scale image

except when color information was necessary to make a

judgment (Rhee 2004). As shape information was more

important than color information in the present study, the

analysis was carried out by converting all images to gray

scale. The Artemia image during hatching was obtained

by removing small unconfirmed meaningless objects and

conducting a boundary process utilizing a grayscale image,

a black and white binary image, and a morphological

calculation (Fig. 2). The object was recognized more

clearly in the converted image and the gray scale image

(Fig. 2a). Meaningless noises as well as meaningful

objects were present while converting the images to black

and white binary images (Fig. 2b) which determined the

object boundary by separating the background from an

object. The small gaps and boundaries of the noise and

object were removed by performing morphological operations

(an opening operation was carried out in the present

study). Most small meaningless objects were successfully

removed in the final black and white binary image (Fig.

2c) after carrying out the calculation. Larger or long

impurities were removed by applying more structural
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elements during an erosion and a dilation operations;

however, only objects with <50 pixels (=0.5 mm) in radius

were selected and removed. Although these calculations

were effective to smooth the boundary or process a small

gap, an excess applying of the morphological operations was

inappropriate because these calculations may change

actual image boundaries (Gonzalez and Wintz 1987).

Object recognition and shape information extraction

(second step)

Shape metrics defined as the various length combinations

are widely used to classify objects based on shape (Jiao et

al. 2012; Zorica et al. 2010; Imasogie and Wendt 2004;

Hu and Stroeven 2006; Arasan et al. 2010). The shape

metrics (information) of each object were extracted using

the finally converted black and white binary image

obtained from the first step. A serial number was given to

the each recognized object, and the values of the circular

degree (PF, plan-form factor = 4πA/P2), defined as the

function of perimeter (P) and area (A, pixel numbers) in

the object among the shape information, were displayed

as shown in Fig. 3. The form factor was close to 1.0 and

0.2-0.3 in cases where the objects were round (circle)

such as an Artemia cyst and a complex shape such as

larvae, respectively. Two types of object shape information

were extracted: one is the absolute size information

including the perimeter, area, and length of the major axis

and the minor axis and the other is the relative ratio

information including the plan-form factor, solidity, and

eccentricity by combining the absolute information. The

shape information of each object can be used as a criterion

to separate an object, and the shape information is

determined based upon 1 pixel = 1 unit. The combined

criterion of absolute and relative information was utilized

in this study. This object classification method using a

Fig. 2. An image converted from a scanned image; (a) Gray scale image data (partial), (b) Black and white binary

image (partial), and (c) An image treated to remove unidentified objects and the boundary using the morpho-

logical calculation function

Fig. 3. Shape metrics and boundary tracks of the detected

objects (area, length, etc.)
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form factor or solidity and area or length information as a

separation criterion is widely used in shape classification

and characterization studies (Hu and Stroeven 2006;

Zorica 2010). In the scatter plot between an area and

circular degree of the objects (Fig. 4), Artemia cysts were

positioned around 1.0 circular degree and larvae were

positioned below about 0.5 circular degrees.

Criteria rules or functions for classifying cysts and

larvae using shape information are better if they are

simple and the performance acceptable. The objects were

separated into seven categories in this study. First, cysts

and larvae were selected by extracting and applying the

criteria to classify and remove the objects touching each

other and meaningless small objects. For the first time, the

cysts and larvae can be classified using a circular degree

only. Although area could also be used, the cysts and

larvae were classified very accurately (approximately

95% accuracy) using the 0.5 form factor criterion (Fig. 5).

Cysts and cysts during the early stage of hatching could

also be separated by applying the 0.85-0.90 section form

of the factor criterion even if separation accuracy is

significantly decreased. 

Fig. 6 indicates that Artemia objects touching each other

and meaningless unconfirmed objects can be separated using

the linear function by applying the area and form factor. A

classification method is available to use the optimum

function drawn from the assumptions of a normal distribution

or a specified distribution function (Sonka et al. 1999);

however, a simple linear function for the separation can

be created using the classification symbol based on

separate shape information if the object classification is

simple. In this study, the linear function of the simple

separation criterion was drawn as shown below. Finally,

the drawn object classification function and classification

error are as follows.

A function to classify the Artemia cysts and larvae

objects touching each other, the other large objects, and

the unidentified small meaningless objects

The unidentified objects (very small and extremely

long objects, impurities, and deformed cyst shells, etc.)

and overlapping objects were classified using an optimum

linear function. The classification function is indicated

below, and the classification error was 27% (mean log p =

−18.2).

Fig. 4. Scatter plot of the area and form factor of the

detected objects

Fig. 5. Separate functions for Artemia cysts and larvae,

overlapped objects, and unidentified objects based

on the partial training set image

Fig. 6. Overlap type classification function for over-

lapped objects based on the partial training set

image 
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Eq. (1) f1(PF, A) = −11.5100 + 1.5071 × PF + 11.1946

× 10−3× A

Eq. (2) f2(PF, A) = −6.5432 + 6.0793 × PF + 5.7020

× 10−3× A 

Here, PF and A indicate the form factor and the area of

the recognized objects, respectively.

Therefore, if the objects satisfy f1> 0 condition, the

Artemia cysts and larvae are classified as the objects

touching each other, whereas if they satisfy f2 < 0

condition, they are classified as unconfirmed objects

(meaningless objects, impurities, and deformed cyst shells).

The remaining objects were separated as Artemia cysts

and larvae. However, in the case of the PF < 0.6 condition,

the specified object area, 500, was used as the criteria area

(<500 was considered impurities and meaningless objects)

to decrease the total classification error in the case of f2 < 0. 

Classification functions for the objects touching each

other

Cyst and larvae were often attached to the objects

touching each other and these objects were roughly

classified into three types as follows. The classification

function is indicated below, and the classification error

was approximately 15% (mean log p = −10.7).

Eq. (1) f1(PF, A) = −15.5766 + 40.8785 × PF + 0.6234

× 10
−3
 × A

Eq. (2) f2(PF, A) = −3.1598 − 11.1258 × PF + 2.6808

× 10
−3
× A

Therefore, if the object satisfies f1 > 0 condition, the

object can be regarded as the object attached to two

Artemia cysts only, and if it satisfies f2 > 0 condition, the

object can be regarded as the object formed with two

larva. The others are the objects attached to a cyst and

larvae. If the areas of the objects are > 1,000, 1,500, or

2,000 (pixels), the objects are assumed as the objects

formed with more than three cysts or larva. However,

these objects rarely occurred, so we assumed every object

is formed with only two meaningful objects (combination

of the cyst and larva).

Classification of Artemia cysts and larvae

The objects different from the objects touching each

other and unconfirmed objects (meaningless objects) can

be considered as the Artemia cysts and larvae. In this

study, objects were specified in detail, such as unhatched

cysts, the early hatching stage (E-1, E-2), and larval stage

(INSTAR-1 and V) (Fig. 7); however, the separation error

for the cysts and the early hatching stage becomes large,

whereas the separation error for the cysts and larvae was

very low (<10%). Thus, only the form factor was used as

a separation criterion and the specific PF values, 0.9 and

0.5, were applied for each case. In other words, the

objects are classified as cysts in the case of the PF > 0.9,

as the early-hatching stage larvae lying between the

hatching stage and a larval stage in the case of the

0.5 < PF < 0.9, and the fully-hatched larvae in the case of

the PF < 0.5 conditions, respectively. The separation error

was not negligible; however, the final counting error

decreases, as it reflects the actual level of the offset for

error compensation. The numbers of the misclassified

objects based on the criteria decreased in cases of counting

the correct objects as the wrong ones, whereas they

increased in cases of counting the wrong objects as the

correct ones.

Hatching rate calculation (third step)

The hatching rate was calculated using the meaningful

objects count information. The pre-determined separation

function was applied to count the objects in the entire

scanned images of an Artemia hatching stage created

under different experimental conditions. Eight images

were used for the hatching rate calculation from the

different pCO2 condition in the bio-assay tank each other.

As the objective of the present study was a performance

evaluation of the hatching rate. The hatching rates for

every image data were estimated under the assumption

that each image is the independent image of the different

conditions. Table 1 represents the number of different

objects used in the hatching rate estimation and the final

calculated hatching rate. The counting error based upon

Fig. 7. A distribution function of occurrence frequency

of Artemia cyst and larvae based on the circular

degree only
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the object classification was considered as the error

calculated from the object classification criterion in the

second step. 

The hatching rate would be calculated faster and more

accurately in bioassay experiments under various experi-

mental conditions if better resolved image data and shape

information are utilized to enable object classification

with better accuracy. The hatching rate was 34-48% when

estimated using the automated counting technique developed

in this study. The maximum error and average root mean

squared error (or difference in some sense) were 19.7%

and 10.9%, respectively, when compared the Artemia larvae

count results estimated manual counting with  automatic

counting using the classification criteria function. 

The reasons for such errors might be due to the spatial

variations (non-homogeneous scattering) for the manual

counting method and the grouping errors for the cysts and

early hatching stage cysts during the automatic counting.

The manual counting method covers just about the 7-10%

of the entire image areas. The manual count results were

adjusted to the results for the entire area. The automatic

counting results were also adjusted to the value for an

Table 1. Hatching rate estimate and object counting detected from the Artemia image data

Image No. of Bioassay 1 2 3 4 5 6 7 8

N 35,298 41,913 44,521 44,571 39,691 52,966 38,311 50,527

Nu 4,618 6,740 10,648 9,682 5,904 14,088 6,382 15,768

No 1,788 2,982 3,652 3,979 6,523 4,039 3,302 6,652

N_egg+N_larvae (=N-Nu-No) 28,892 32,191 30,221 30,910 27,264 34,839 28,627 28,107

TN_egg (automatic) 17,054 22,673 22,555 21,313 26,482 26,552 21,939 25,957

N_plarvae 10,320 7,109 4,405 4,263 2,661 9,673 6,884 2,450

TN_larvae* 5,095 8,373 10,564 13,293 11,168 6,693 6,407 13,004

TN_larvae (automatic) 15,415 15,482 14,969 17,556 13,829 16,366 13,291 15,454

TN_egg + TN_larvae 32,469 38,155 37,524 38,869 40,311 42,918 35,230 41,411

HR (%) (automatic) 47.5 40.6 39.9 45.2 34.3 38.1  37.7 37.3

TN_egg (manual) 23,586 25,885 23,609 21,738 22,688 28,442 27,891 19,528

TN_larvae (manual) 18,871 20,320 17,958 14,154 14,193 17,792 16,248 13,456

HR (%) (manual) 27.8 27.6 36.8 42.4 40.1 31.1 27.1 50.6

Ref. All variables in the Table are defined in Section 2. automatic = count and estimation using the method suggested in this study, manual = count

and estimation manually, TN_larvae* = no. of larvae (does not include the partially hatched cysts); N_plarvae = no. of the partially hatched larvae.

TN_larvae = TN_larvae*+ N_plarvae)

Fig. 8. Distribution of the shape metrics of Artemia cysts, larvae, and other objects; (a) Area probability distribution

of all objects detected in image no. 1 (n = 19,767) and (b) Length probability distribution of all objects detected

in image no. 1 (n = 19,767) 
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entire area from the pre-specified area results excluding

the adjacent part around the boundary of the entire image

to decrease boundary error. 

Because the image analysis results provide hatching

rate information as well as shape information of each

object, a statistical distribution and object shapes for each

type can be obtained (e.g., the area distribution and

perimeter of multiple Artemia cysts and larvae, Fig. 8).

Although the pixel numbers should be high to express the

size of an object accurately, if the actual size of an object

is small, expressing pixel number would be too small

under fixed resolution conditions; thus, imaging analysis

should be conducted using image information with

appropriate resolution that provides shape information

including length and area. Image pixel numbers for

objects analyzed in the study were >300 and 500 for the

cysts and larvae, respectively, which did not deviate from

the object shape discrimination criteria (Sonka et al. 1999).

4. Conclusion and suggestion

We developed an efficient method to count cysts and

larvae automatically using the object discrimination function

from the Artemia image data.

Based on this technique, the hatching rate of the species

was estimated using Artemia image data from various

experimental conditions. The hatching rate was 34-48%

when estimated using the automated counting technique

developed in this study. The maximum error and average

root mean squared error were 19.7% and 10.9%,

respectively, when compared manual counting with the

automatic counting using the classification criteria function.

The average difference of the hatching rate estimate was

approximately 10% (p = 0.05) and was due to the error in

the criteria for classifying Artemia cysts and larvae.

The discriminant function to classify Artemia cysts and

larvae was combined with form factor (=0.5), length, and

area information. The best classification functions for the

objects depend on the object shape characteristics, the

area information for small objects, and the form factor

information for the objects touching each other. 

However, due to the limits of image resolution, relatively

high errors were observed in clearly separating objects

during the early cyst hatching phase because of the

uncertain touching object area information. Although

there were large deviations while separating details, we

were able to clearly separate cysts and larvae with >95%

accuracy (p = 0.05) because cysts and larvae are different

shapes.

These techniques can be utilized for counting simple

fields, extracting shape information, and for bioassay data

analysis to classify objects.

Further investigations are warranted regarding the

database for characteristic information and drawing the

function for the shape and classification criteria.
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