DOI QR코드

DOI QR Code

Effect of Double Porous Layer on a Polymer Electrolyte Unitized Regenerative Fuel Cell

수전해·연료전지 가역셀에서 이중 가스 확산층의 효과

  • Hwang, Chul-Min (Department of Energy & Environment Technological Development, Innovation KR Co., Ltd.) ;
  • Park, Dae-Heum (Research & Development Division, Hyundai Engineering & Construction Co., Ltd.) ;
  • Jung, Young-Guan (Department of Mechanical Engineering, Kumoh National University of Technology) ;
  • Kim, Kyunghoon (Department of Mechanical Engineering, Kumoh National University of Technology) ;
  • Kim, Jongsoo (Korea Institute of Machinery and Materials)
  • Received : 2013.06.20
  • Accepted : 2013.08.31
  • Published : 2013.08.31

Abstract

TUnitized reversible fuel cells (URFC) combine the functionality of a fuel cell and electrolyzer in one unitized device. For a URFC with proton exchange membrane, a titanium (Ti)-felt is applied to the gas diffusion layer (GDL) substrate at the oxygen electrode, and additionally titanium (Ti)-powders and TiN-powders are loaded in the GDL substrate as a micro porous layer (MPL). Double porous layer with TiN MPL was not acceptable for the URFC because both of fuel cell performance and electrolysis performance are degraded. The double porous layer with Ti-powder loading in the Ti-felt substrate influence rearly for the electrolysis performance. In contrast, the change of pore-size distribution brings a significant improvement of fuel cell performance under fully humidification conditions. This fact indicates that the hydrophobic meso-pores in the GDL play an important role for mass transport.

Keywords

References

  1. R. Baldwin, M. Pham, A. Leonida, J. McElroy, T. Nalette, "Hydrogen-oxygen proton-exchange membrane fuel cells and electrolyzers", J. Power Sources, Vol. 29, 1990, pp. 399-412. https://doi.org/10.1016/0378-7753(90)85013-3
  2. K. Bolwin, "Application of regenerative fuel cells for space energy storage: a comparison to battery systems", J. Power Sources, Vol. 40, 1992, pp. 307-321. https://doi.org/10.1016/0378-7753(92)80019-8
  3. L. L. Swette, A. B. LaConti, S. A. McCatty, "Protonexchange membrane regenerative fuel cells", J. Power Sources, Vol.47, 1994, pp. 343-351. https://doi.org/10.1016/0378-7753(94)87013-6
  4. F. Mitlitsky, B. Myers, A. H. Weisberg, "Regenerative fuel cell systems", Energy Fuels, Vol. 12, 1998, pp. 56-71. https://doi.org/10.1021/ef970151w
  5. S. Zhigang, Y. Baolian, H. Ming, "Bifunctional electrodes, with thin catalyst layer for 'unitized7 proton exchange membrane regenerative fuel cell", J. Power Sources, Vol. 79, 1999, pp. 82-85. https://doi.org/10.1016/S0378-7753(99)00047-6
  6. W. Smith, "The role of fuel cells in energy storage", J. Power Sources, Vol. 86, 2000, pp. 74-83. https://doi.org/10.1016/S0378-7753(99)00485-1
  7. T. Ioroi, N. Kitazawa, K. Yasuda, Y. Yamamoto, H. Takenaka, "Iridium oxide/platinum electrocatalyst for unitized regenerative fuel cells", J. Electrochem. Soc., Vol. 147, 2000, pp. 2018-2022. https://doi.org/10.1149/1.1393478
  8. T. Ioroi, K. Yasuda, Z. Siroma, N. Fujiwara, Y. Miyazaki, "Thin film electrocatalyst layer for unitized regenerative polymer electrolyte fuel cells", J. Power Sources, Vol. 112, 2002, pp. 583-587. https://doi.org/10.1016/S0378-7753(02)00466-4
  9. T. Ioroi, T. Oku, K. Yasuda, N. Kumagai, Y. Miyazaki, "Influence of PTFE coating on gas diffusion backing for unitized regenerative polymer electrolyte fuel cells", J. Power Sources, Vol. 124, 2003, pp. 385-389. https://doi.org/10.1016/S0378-7753(03)00795-X
  10. S. D. Yim, G. G. Park, Y. J. Sohn, W. Y. Lee, Y. G. Yoon, T. H. Yang, S. Um, S. P. Yu, C. S. Kim, "Optimization of PtIr electrocatalyst for PEM URFC". Int. J. Hydrog. Energy, Vol. 30, 2005, pp. 1345-1350. https://doi.org/10.1016/j.ijhydene.2005.04.013
  11. U. Wittstadt, E. Wagner, T. Jungmann, "Membrane electrode assemblies for unitized regenerative polymer electrolyte fuel cells", J. Power Sources, Vol. 145, 2005, pp. 555-562. https://doi.org/10.1016/j.jpowsour.2005.02.068
  12. S. Song, H. Zhang, X. Ma, Z. G. Shao, Y. Zhang, B. Yi, "Bifunctional oxygen electrode with corrosion-resistive gas diffusion layer for unitized regenerative fuel cell", Electrochem. Commun, Vol. 8, 2006, pp. 399-405. https://doi.org/10.1016/j.elecom.2006.01.001
  13. H. Y. Jung, S. Y. Huang, P. Ganesan, B. N. Popov, "Performance of gold-coated titanium bipolar plates in unitized regenerative fuel cell operation", J. Power Sources, Vol. 194, 2009, pp. 972-975. https://doi.org/10.1016/j.jpowsour.2009.06.030
  14. A. Kato, M. Masuda, A. Takahashi, T. Ioroi, M. Yamaki, H. Ito, "Durability investigation of a PEM-type unitized reversible cell", ECS Transactions, Vol. 25, 2009, pp. 1271-1278.
  15. Y. G. Jung, S. W. Kim, K. H. Kim, S. D. Choi, T. I. Jang, C. M. Hwang, "A study on the hydrogen supply for variation in output from a metal hydride canister", Trans. of the Korean Hydrogen and New Energy Society(2009. 6), Vol. 20, No. 3, pp. 216-223.
  16. C. M. Hwang, M. Ishida, H. Ito, T. Maeda, A. Nakano, A. Kato, T. Yoshida "Effect of titanium powder loading in gas diffusion layer of a polymer electrolyte unitized reversible fuel cell", J. of Power Sources, Vol. 202, 2012, pp. 108-113. https://doi.org/10.1016/j.jpowsour.2011.11.041

Cited by

  1. Study on Applicability of Household Fuel Cell System with Operating Methods vol.25, pp.2, 2014, https://doi.org/10.7316/KHNES.2014.25.2.139