DOI QR코드

DOI QR Code

Review of Structural Design Provisions of Rectangular Concrete Filled Tubular Columns

각형 콘크리트충전 강관기둥 부재의 구조설계기준 비교연구

  • Lee, Cheol Ho (Dept. of Architecture and Architectural Engineering, Seoul National University) ;
  • Kang, Ki Yong (Dept. of Architecture and Architectural Engineering, Seoul National University) ;
  • Kim, Sung Yong (Dept. of Architecture and Architectural Engineering, Seoul National University) ;
  • Koo, Cheol Hoe (Dongbu Corporation)
  • Received : 2013.02.28
  • Accepted : 2013.07.29
  • Published : 2013.08.27

Abstract

The structural provisions of rectangular CFT (concrete-filled tubular) columns in the 2005/2010 AISC Specification, ACI 318-08, and EC4 were comparatively analyzed as a preliminary study for establishing the unified standards for composite structures. The provisions analyzed included those related to the nominal strength, the effect of confinement, plate slenderness, effective flexural stiffness, and the material strength limitations. Small or large difference can be found among the provisions of AISC, ACI, and EC4. Generally, the 2010 AISC Specification provides the revised provisions which reflect up-to-date test results and tries to minimize the conflict with the ACI provisions. For example, the 2010 AISC Specification introduced a more finely divided plate slenderness limits for CFT columns. In seismic applications, the plate slenderness limits required for highly and moderately ductile CFT columns were separately defined. However, the upper cap limitations on material strengths in both the AISC and EC4 provisions are too restrictive and need to be relaxed considering the high-strength material test database currently available. This study found that no provisions reviewed in this paper provide a generally satisfactory method for predicting the P-M interaction strength of CFT columns under various material combinations. It is also emphasized that a practical constitutive model, which can reasonably reflect the stress-strain characteristics of confined concrete of rectangular CFT columns, is urgently needed for a reliable prediction of the P-M interaction strength.

본 연구에서는 향후 기준집필 및 연구방향 제시를 위한 선행연구로써, 2005/2010 AISC, ACI 318-08과 EC4 내 각형 CFT 기둥 설계조항 간의 부재강도 산정포맷, 단면구조성능, 구속효과. 재료강도 상한 및 강재비, 판-폭 두께비 제한 등을 간략히 요약하고 비교분석하였다. 전반적으로 2010 AISC는 ACI 기준과의 충돌 완화를 위해 변형률적합법을 도입하는 등 최신 실험 및 연구 결과들을 반영하여 개정하였으며 CFT 기둥에서 세장비를 더욱 세분화하거나 내진 판-폭 두께비를 고연성과 중간연성 부재로 구분하는 등, 타 기준에 비해 발전된 형태의 방안을 제시하고 있다. 하지만 AISC와 EC4에서의 재료강도 상한치는 너무나 제한적이기때문에 현재 사용 가능한 고강도 재료실험 데이터베이스를 고려하여 완화할 필요가 있다. 본 연구를 통해 AISC, ACI, EC4에서 제시하는 각형 CFT 기둥의 P-M 조합강도 산정식은 다양한 설계조건에 대해 만족스러운 강도예측을 하지 못함을 확인하였다. 따라서 각형 CFT 기둥의 신뢰도 높은 P-M 조합강도 산정을 위하여 구속된 콘크리트의 응력-변형률 관계를 합리적으로 반영할 수 있는 실용적인 구성 방정식이 개발되어야 한다.

Keywords

References

  1. ECS (2005) Design of composite steel and concrete structures, European Committee for standardization, UK.
  2. ACI (2008). Building code requirements for structural concrete (ACI 318-08) and commentary, American Concrete Institute, USA.
  3. AISC (2005) Specification for structural steel buildings, American Institute of Steel Construction, USA.
  4. 최영환 (2012) 콘크리트 충전 각형강관 기둥의 폭두께비 제한에 관한 연구, 한국강구조학회논문집, 한국강구조학회, 제 24권, 제4호, pp.451-458. Choi, Y.H. (2012) Limitations on the width-tothickness ratio of rectangular concrete-filled tubular (CFT), Journal of Korean Society of Steel Construction, KSSC, Vol. 24, No. 4, pp.451 -458 (in Korean). https://doi.org/10.7781/kjoss.2012.24.4.451
  5. 김철환, 김성은 (2010) 콘크리트 충전 각형강관 주각부의 내력 및 변형에 관한 연구, 한국강구조학회논문집, 한 국강구조학회, 제 22권, 제3호, pp.253-260. Kim, C.H. and Kim, S.E. (2010) A Study on the behaviors of column-to-footing connections for Concrete Filled Tube(CFT) System, Journal of Korean Society of Steel Construction, KSSC, Vol. 22, No. 3, pp.253-260 (in Korean).
  6. 심현주, 최병정, 이은택 (2012) 중심압축력을 받는 내진 건축구조용 각형강관 CFT 부재의 구조성능 평가, 한국강구조학회논문집, 한국강구조학회, 제24권, 제4호, pp.443-450. Shim, H.J., Choi, B.J., and Lee, E.T. (2012) Stuructural performance evaluation to centrally compressed CFT columns using seismic rectangular steel tube, Journal of Korean Society of Steel Construction, KSSC, Vol. 24, No. 4, pp.443-450 (in Korean).
  7. AISC (2010) Specification for structural steel buildings, American Institute of Steel Construction, USA.
  8. 대한건축학회(2009) 건축구조설계기준 및 해설(KBC 2009), 기문당. AIK (2009) Korea building code and commentary - structural, Architectural Institute of Korea (in Korean).
  9. Leon, R.T., Kim, D.K., and Hajjar, J.F. (2007) Limit state response of composite columns and beam-columns. Part 1: Formulation of design provisions for the 2005 AISC specification, Engineering Journal, AISC, no. 4, pp. 341-358.
  10. Rondal, J. and Maquoi, R. (1979) Single equation for SSRC column strength curves, Journal of the structureal Division, Vol. 105, No. 1, pp.247-250.
  11. Fujimoto, T., Mukai, A., Nishiyama, I., and Sakino, K. (2004) Behavior of eccentrically loaded concretefilled steel tubular columns, Journal of Structural Engineering, ASCE, Vol. 130, No. 2, pp.203-212. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(203)
  12. Liu, D. and Gho, W. (2005) Axial load behaviour of high strength rectangular concrete filled steel tubular stub columns, Thin-Walled Structures, Vol. 43, No. 8, pp.1131-1142. https://doi.org/10.1016/j.tws.2005.03.007
  13. Lue, D.M., Liu, J., and Yen, T. (2007) Experimental study on rectangular CFT columns with highstrength concrete, Journal of Constructional Steel Research, Vol. 63, No. 1, pp.37-44. https://doi.org/10.1016/j.jcsr.2006.03.007
  14. Varma, A.H., Ricles, J.M., Sause, R., and Lu, L.W. (2002) Experimental behavior of high stength square concrete-filled steel tube beam-columns, Journal of Structural Engineering, ASCE, Vol. 128, No. 3, pp.309-318. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:3(309)
  15. Mander, J.B., Priestley, M., and Park, R. (1988) Theoretical stress strain model for concrete, Journal of Structural Engineering, Vol. 114, No. 8, pp.1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)

Cited by

  1. Review of Design Flexural Strengths of Steel–Concrete Composite Beams for Building Structures vol.10, pp.S3, 2016, https://doi.org/10.1007/s40069-016-0146-7
  2. Stress-transfer in concrete encased and filled tube square columns employed in top-down construction vol.22, pp.1, 2016, https://doi.org/10.12989/scs.2016.22.1.063
  3. 강섬유 콘크리트가 충전된 용접조립 각형강관 기둥의 구조성능 실험연구 vol.27, pp.1, 2013, https://doi.org/10.7781/kjoss.2015.27.1.013
  4. 열연강판 팔각강관 버팀보의 초기편심과 축방향 압축강도 vol.27, pp.1, 2013, https://doi.org/10.7781/kjoss.2015.27.1.023
  5. 시공단계를 고려한 피복충전형 콘크리트충전 각형기둥의 구조적 거동 분석 vol.27, pp.1, 2015, https://doi.org/10.7781/kjoss.2015.27.1.043
  6. 세장 단면의 고강도 강관을 적용한 각형 CFT 기둥의 압축실험 vol.27, pp.2, 2013, https://doi.org/10.7781/kjoss.2015.27.2.219
  7. 강재압축재의 방폭성능에 대한 중력하중효과의 해석적 연구 vol.27, pp.3, 2013, https://doi.org/10.7781/kjoss.2015.27.3.273
  8. 강재 액체저장탱크의 내진설계를 위한 설계기준 분석 vol.28, pp.3, 2016, https://doi.org/10.7781/kjoss.2016.28.3.195
  9. 일축 압축력을 받는 콘크리트충전 각형강관 단주의 구조적 거동 vol.22, pp.2, 2013, https://doi.org/10.5762/kais.2021.22.2.617