DOI QR코드

DOI QR Code

Prediction Models for the Prying Action Force and Contact Force of a T-stub Fastened by High-Strength Bolts

고력볼트로 체결된 T-stub의 지레작용력 및 부재 접촉력 예측모델

  • Received : 2013.01.11
  • Accepted : 2013.07.30
  • Published : 2013.08.27

Abstract

A T-stub connection with high-strength bolts under tensile force is affected by prying action force and the contact force, among others, between members. If a design equation that does not consider such prying action force and contact force between members is not proposed, the T-stub under tensile force is liable to be fractured under the strength lower than the estimated design strength. To prevent it, many studies have proposed contact force estimation equations between members as well as the prying action force of the T-stub connection with high-strength bolts. However, no design equations based on such research have been proposed in South Korea. Therefore, this study aims to propose an estimation model for more accurate prying action force and contact force, and improve on previously proposed estimation models by implementing the three-dimensional, nonlinear finite element analysis. Throughout the results of three-dimensional, nonlinear finite element analysis, the prediction model proposed in this research for the prying action force and contact force of a T-stub provided much more accurate estimation than that of a existing prediction model previously suggested.

인장력을 받는 고력볼트로 체결된 T-stub는 지레작용력과 부재 사이의 접촉력 등의 영향을 받는다. 이러한 지레작용과 부재 사이의 접촉력 등이 고려된 설계식이 제안되지 않는 경우, 인장력을 받는 T-stub는 예측한 설계강도 보다 더 작은 강도에도 파괴될 가능성이 있다. 이를 방지하기 위하여 지금까지 많은 연구를 통하여 고력볼트로 체결된 T-stub의 지레작용력과 부재 사이의 접촉력 예측모델이 제안되었다. 그러나 아직도 우리나라에서는 이를 반영한 설계식의 제안이 이루어지고 있지 않다. 따라서 이 연구는 3차원 비선형 유한요소해석법을 적용하여 그동안 제안된 예측모델을 개선한 보다 정확한 지레작용력 및 접촉력 예측모델을 제안하고자 진행하였다. 3차원 비선형 유한요소 해석 결과, 이 연구에서 제안한 지레작용력 및 접촉력 예측모델은 기존의 예측모델보다 더 근사적인 예측값을 제공하였다.

Keywords

References

  1. Douty, R.T. and McGuire, W. (1965) High strength bolted moment connections, J. Struct. Div., ASCE, Vol. 91, No. 2, pp.101-128.
  2. Agerskov, H. (1976) High strength bolted connections subject to prying. Journal of Structural Engineering Div., ASCE, Vol. 102, No. 1, pp.161-175.
  3. Struik, J.H.A. and de Back, J. (1969) Tests on bolted T-stubs with respect to bolted beam-tocolumn connections, Report 6-69-13, Stevin Laboratory, Delft University of Technology, Delft, The Netherlands.
  4. Swanson, J.A. (1999) Characterization of the strength, stiffness, and ductility behavior of T-stub connections, Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, USA.
  5. Swanson, J.A. (2002) Ultimate strength prying models for bolted T-stub connections, Engineering Journal, AISC, Vol. 39, No. 3, pp.136-147.
  6. Jaspart, J.P., Steenhuis, M., and Weinand, K. (1995) The stiffness model of Revised Annex J of Eurocode 3, Proceedings of 3rd International Workshop on Connection in Steel Structures, Trento, pp.28-31.
  7. Jaspart, J.P. and Maquoi, R. (1995) Effect of bolt preloading on joint behaviour, Steel Structures, Eurosteel '95, edited by Kounadis, Balkema.
  8. Faella, C., Piluso, V., and Rizzano, G. (1996) Some proposals to improve EC3-Annex J Approach for predicting the moment-rotation curve of extended end plate connections, Costruzioni Metalliche, No. 4.
  9. Faella, C., Piluso, V., and Rizzano, G. (1998) Experimental analysis of bolted connections: snug versus preloaded bolts, Journal of Structural Engineering, ASCE, Vol. 124, No. 7, pp.765-774. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:7(765)
  10. 양재근, 박재호, 백민창 (2012) 고력볼트로 체결된 T-stub의 지레작용력 및 접촉력예측모델, 2012년도 추계학술발표논문집, 대한건축학회, 제32권, 제2호, pp.465-466. Yang, J.G., Park, J.H., and Back, M.C. (2012) Prediction models for the prying action force and contact force of a T-stub fastened by highstrength bolts, Proceedings of Annual AIK Conference, AIK, pp.465-466.
  11. AISC (2010) Steel Construction Manual, 14th Ed., American Institute of Steel Construction, Chicago, II. pp. 9-10 - 9-13.
  12. Lemonis, M.E. and Gantes, C.J. (2006) Incremental modeling of T-stub connections, Jounal of Mechanics of Materials and Structures, Vol. 1, No. 7, pp. 1135-1159. https://doi.org/10.2140/jomms.2006.1.1135
  13. Thornton, W.A. (1985) Prying action: A general treatment, Engineering Journal, AISC, Vol. 22, No. 2, pp.67-75.
  14. Astaneh, A. (1985) Procedure for a design and analysis of hanger-type connections, Engineering Journal, AISC, Vol. 22, No. 2, pp.63-66.
  15. ABAQUS. (2007) User's manual, I-IV(Version 6.9)
  16. Richard, R.M., Hsia, W.K., and Chmielowiec, M. (1988) Derived moment-rotation curves for doubleframing angles, Comput & Struct, Elsevier Science Ltd., 3, pp.485-494.
  17. Ballio, G. and Mazzolani, F.M. (1994) Strutture in A cciaio. Hoepli, Milan.
  18. Kulak, G.L., Fisher, J.W., and Struik, J.H.A. (2001) Guide to design criteria for bolted and riveted joints, 2nd Ed., American Institute of Steel Construction, New York.
  19. Bursi, O. (1990) Behaviour of high strength bolts in bolted beam-to-column connections, Proceedings of Applied Stress Analysis Conference, Nottingham.
  20. Hantouche, E.G. (2011) Behavioral characterization of built-up T-stub connections for use in moment resisting frames, Ph.D. Dissertation, University of Cincinnati, Cincinnati, USA.

Cited by

  1. Evaluation of the Initial Rotational Stiffness of a Double Split Tee Connection vol.26, pp.2, 2014, https://doi.org/10.7781/kjoss.2014.26.2.133
  2. 비보강 확장단부판 접합부에 체결된 고장력볼트의 지레작용력 및 축방향 인장강성에 대한 해석적 연구 vol.27, pp.2, 2013, https://doi.org/10.7781/kjoss.2015.27.2.251
  3. 반복하중을 받는 비보강 확장 단부판 접합부의 해석 및 실험적 연구 vol.28, pp.6, 2016, https://doi.org/10.7781/kjoss.2016.28.6.439
  4. 프리캐스트 콘크리트 벽체의 상하부에 C형강 보가 결합된 복합 패널의 개발 vol.29, pp.6, 2013, https://doi.org/10.7781/kjoss.2017.29.6.435
  5. An Experimental Study on the Structural Behavior of High Strength Long Bolt Tension Type Joints vol.32, pp.3, 2013, https://doi.org/10.7781/kjoss.2020.32.3.161