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STOCHASTIC DIFFERENTIAL EQUATION MODELS FOR

EXTRACELLULAR SIGNAL-REGULATED KINASE

PATHWAYS

S.M. CHOO∗ AND Y.H. KIM†

Abstract. There exist many deterministic models for signaling pathways
in systems biology. However the models do not consider the stochastic prop-
erties of the pathways, which means the models fit well with experimental
data in certain situations but poorly in others. Incorporating stochastic-

ity into deterministic models is one way to handle this problem. In this
paper the way is used to produce stochastic models based on the determin-
istic differential equations for the published extracellular signal-regulated

kinase (ERK) pathway. We consider strong convergence and stability of
the numerical approximations for the stochastic models.
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1. Introduction

Signal transduction through the Ras-Raf-MEK-ERK pathway (or ERK path-
way for short) is essential for many cellular processes, including growth, cell-cycle
progression, differentiation, and apoptosis. In order to elucidate the hidden dy-
namics of these feedback mechanisms and to identify the functional role of RKIP,
an experimentally validated deterministic model for ERK pathway is provided
in [4]. The results obtained from the equations are fitted with some experimen-
tal data; however, the system of ordinary differential equations(ODEs) do not
reflect stochastic nature of the ERK pathway. Thus the deterministic model
may be modified into a more realistic model including stochastic properties.

For incorporating stochasticity into the deterministic model, Itô stochastic
differential equations(SDEs) are introduced based on the ODEs; some of the
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parameters in the ODEs are replaced by those having stochasticity and the
concentrations are modified to the corresponding random variables.

For the completeness of this paper, the ODEs for the ERK pathway is given
by

d[RasGTP ]

dt
=

Kcat1u(t)
(
Ras− [RasGTP ]

)
(
Kmk1 +Ras− [RasGTP ]

)(
1 +

(
[ERK]
Ki erk

)3.2)
− Vmax1 [RasGTP ]

Kmp1 + [RasGTP ]

d[Raf ]

dt
=

Kcat2

(
Raf − [Raf ]

)
[RasGTP ]

Kmk2 +Raf − [Raf ]
− Vmax2 [Raf ]

Kmp2
+ [Raf ]

d[MEK]

dt
=

Kcat3

(
MEK − [MEK]

)
[Raf ]

Kmk3

(
1 +

(
(RKIP−[RKIP ])

Ki rkip

)2.3
)

+MEK − [MEK]

− Vmax3 [MEK]

Kmp3 + [MEK]

d[ERK]

dt
=

Kcat4

(
ERK − [ERK]

)
[MEK]

Kmk4 + ERK − [ERK]
− Vmax4 [ERK]

Kmp4 + [ERK]

d[RKIP ]

dt
=

Kcat5

(
RKIP − [RKIP ]

)
[ERK]

Kmk5 +RKIP − [RKIP ]
− Vmax5 [RKIP ]

Kmp5 + [RKIP ]
, (1)

where [RasGTP ], [Raf ], [MEK] and [ERK] denote the concentrations of the
activated proteins Ras, Raf, MEK and ERK, respectively. [RKIP ] denotes the
concentrations of the phosphorylated RKIP. The upper bar of each protein kinase
(e.g., ERK) means the total amount of the protein which is assumed constant.
u(t) denotes the activating stimulation. The other details of the ODEs can be
found in [4].

The stochastic model is constructed by incorporating stochasticity to the
deterministic model (1). To our knowledge, there are no approaches to incorpo-
rate stochasticity into the ERK pathway model. In this paper, the SDEs and its
numerical scheme are given in Section 2 as well as definitions necessary for nu-
merical analysis. In the last two sections, error estimates and numerical stability
are obtained.

2. Notations and Definitions

Incorporate stochasticity into some of the parameters for modifying the ODEs

(1), denoted by dX(t)
dt = a(X(t)), into the Itô SDEs of the form

dX(t) = a (X(t)) dt+
m∑
j=1

bj (X(t)) dWj(t) , 0 ≤ t ≤ T (2)
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where Wj(t) are independent and real valued standard Wiener processes and
a, bj : R

5 → R5. Stochastic processes X(t) with values in R5 are Ft-measurable
and Ft denotes the increasing family of σ-algebras(the augmented filtration) gen-
erated by the random variables Wj(s), 0 ≤ s ≤ t. If we denote a = (a1, · · · , a5),
ai(X(t)) = Kcatiai1(X(t))− Vmaxiai2(X(t)) in the ODEs (1) and change Vmaxi

(1 ≤ i ≤ 5) to Vmaxi + ξ1 with the white noise processes ξ1 for obtaining (2),
respectively, then m = 1 and b1(X(t)) = (a11(X(t)), · · · , a51(X(t))) in (2).

E(X) = (E(X1), · · · , E(X5)) is the expectation of X = (X1, · · · , X5). Let
∥ ∥ and ⟨, ⟩ denote the Euclidean norm and inner product in R5. For simplicity,

E ∥X∥2 is used to mean E
(
∥X∥2

)
.

The equation (2) constructed from the ODEs (1) has a unique, mean square
bounded strong solution X(t), which is a function of the initial value X(0) and
the values Wj(s)(1 ≤ j ≤ m, 0 ≤ s ≤ t) (See [2] for the definition of strong
solution and the existence and uniqueness).

To find time discrete approximations corresponding to the equation (2) the
time interval [0, T ] is uniformly divided into t0 = 0 < t1 < · · · < tN = T with
the time-step size ∆ = T

N for a natural number N .
Consider the one-step numerical scheme for the SDEs (2)

Yn+1 = Yn + a (Yn)∆ +

m∑
j=1

bj (Yn)∆Wj (tn) , (3)

where Y0 = X(0) and Yn+1 is the numerical approximation of X(tn+1) at time
tn+1 = (n+ 1)∆ and ∆Wj(tn) = Wj(tn+1)−Wj(tn), n = 0, 1, · · · , N − 1.

We recall the definitions of strong convergence in the mean square sense and
numerical stability [2]. Let nt = max0≤n≤t n(0 ≤ t ≤ T ) and C > 0 be a generic
constant that may be different at each occurrence.

Definition 2.1. A discrete time approximation Yn converges with strong order
γ > 0 in the mean square sense if there exist constants ∆ and C, not depending
on ∆, such that

max
0≤n≤N

(
E ∥ X(tn)− Yn ∥2

)1/2 ≤ C∆γ .

Definition 2.2. Let Y denote a time discrete approximation (i.e., numerical

solution) with a time-step size ∆ > 0 and an initial value Y0, and let Ŷ denote
the corresponding approximation (constructed using the same driving Brownian

path) with an initial value Ŷ0. A time discrete Y is called stochastically numerical
stable for a given stochastic differential equation if for any finite interval [0,T]
there exists a constant ∆0 such that for ϵ > 0 and ∆ ∈ (0,∆0)

lim
∥Y0−Ŷ0∥→0

sup
0≤t≤T

P
(
∥ Ynt − Ŷnt ∥ ≥ ϵ

)
= 0.
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3. Convergence in mean square sense

In order to obtain error estimates for the numerical solution Yn+1 of (3) , we
introduce another variable Y tn

n+1 for calculating the error E∥
(
X(tn+1)− Y tn

n+1

)
+
(
Y tn
n+1 − Yn+1

)
∥2. Here the variable Y tn

n+1 denotes the solution of the numerical
scheme

Y tn
n+1 = Y tn

n + a
(
Y tn
n

)
∆+

m∑
j=1

bj
(
Y tn
n

)
∆Wj (tn) (4)

with an initial condition Y tn
n = X (tn) . For using the Itô formula related with the

time-discrete approximation Y tn
n+1, we define the time-continuous approximation

Y tn
t = (Y tn

t,1 , · · · , Y
tn
t,5 ) as the solution of the scheme for tn ≤ t ≤ tn+1,

Y tn
t = Y tn

n + a
(
Y tn
n

)
(t− tn) +

m∑
j=1

bj
(
Y tn
n

)
(Wj (t)−Wj (tn)) . (5)

Note that Y tn
t = Y tn

n at t = tn and Y tn
t = Y tn

n+1 at t = tn+1.
The following lemmas are needed to prove the main theorem in this section.

Lemma 3.1. Let X (t), Yn+1 and Y tn
t be the solutions for (2), (3) and (5),

respectively. Then there exists a constant C such that for n = 0, · · · , N − 1 and
0 ≤ t ≤ T ,

E ∥X (t)∥2 + E ∥Yn+1∥2 + E
∥∥Y tn

t

∥∥2 ≤ C.

Proof. Note that from (2) and Itô isometry (see [3]),

E ∥X (t)∥2 = E

∥∥∥∥∥∥X(0) +

∫ t

0

a(X(s))ds+
m∑
j=1

∫ t

0

bj (X(s)) dWj(s)

∥∥∥∥∥∥
2

(6)

≤ C

E∥X(0)∥2 +
∫ t

0

E∥a(X(s))∥2ds+
m∑
j=1

∫ t

0

E∥bj (X(s)) ∥2ds

 .

Using the definitions of a(X(t)) and bj(X(t)) in (1)-(2), we obtain for some C,

∥a(X(t))∥2 + ∥bj(X(t))∥2 ≤ C∥X(t)∥2, 1 ≤ j ≤ m, (7)

which simplifies (6):

E ∥X (t)∥2 ≤ CE∥X(0)∥2 + C

∫ t

0

E∥X(s)∥2ds.

This inequality implies the existence of a constant C such that

E ∥X (t)∥2 ≤ C (8)

by using the Grownwall inequality. The boundedness of the other two expecta-
tions can be shown by a similar argument, which completes the proof. �



Stochastic differential equation models for the ERK pathway 461

The Lemma 3.1 means that the solutions of (2)–(5) are bounded in the mean
square sense, which is used in proving Lemma 3.2.

Lemma 3.2. Let X (tn+1) and Y tn
n+1 be the solutions for (2) and (4), respec-

tively. Then there exists a constant C such that for n = 0, · · · , N − 1,

E
∥∥X (tn+1)− Y tn

n+1

∥∥2 ≤ C∆2.

Proof. It follows from (2) and (4), and the definition of the Itô stochastic integral
that

X(tn+1)− Y tn
n+1 (9)

=

∫ tn+1

tn

(a (X(t))− a (X(tn))) dt+
m∑
j=1

∫ tn+1

tn

(bj (X(t))− bj (X(tn))) dWj(t),

which can be written as

d
(
X (t)− Y tn

t

)
= (a (X(t))− a (X(tn))) dt+

m∑
j=1

(bj (X(t))− bj (X(tn))) dWj(t)

≡ ã(t)dt+
m∑
j=1

b̃j(t)dWj(t). (10)

The initial condition Xi (tn) − Y tn
n,i = 0 (1 ≤ i ≤ 5), the Itô formula with (10)

and f
(
Xi (t)− Y tn

t,i

)
=
(
Xi (t)− Y tn

t,i

)2
imply

(
Xi (tn+1)− Y tn

n+1,i

)2
=

∫ tn+1

tn

2
(
Xi (t)− Y tn

t,i

)
ãi(t) +

m∑
j=1

(
b̃ij(t)

)2 dt

+
m∑
j=1

∫ tn+1

tn

2
(
Xi (t)− Y tn

t,i

)
b̃ij(t)dWj(t). (11)

Taking the expectation in (11), we obtain

E
∥∥X (tn+1)− Y tn

n+1

∥∥2 =

∫ tn+1

tn

E

2
⟨
X (t)− Y tn

t , ã(t)
⟩
+

m∑
j=1

∥∥∥b̃j(t)∥∥∥2
 dt

+
m∑
j=1

E

∫ tn+1

tn

2
⟨
X (t)− Y tn

t , b̃j(t)
⟩
dWj(t), (12)

where the last term on the right hand side of (12) is equal to zero by using the

definition of the Itô stochastic integral and the fact that
(
Xi (t)− Y tn

t,i

)
b̃ij(t)

and ∆Wj(t) are independent with E(Wj(t)−Wj(s)) = 0. For the calculation of
the other terms in (12), note that

E
∥∥X (t)− Y tn

t

∥∥2 =

∫ t

tn

E

2
⟨
X (s)− Y tn

s , ã(s)
⟩
+

m∑
j=1

∥∥∥b̃j(s)∥∥∥2
 ds
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≤ C

∫ t

tn

ds ≤ C(t− tn), (13)

and

E ∥X(t)−X(tn)∥2 ≤ CE

∫ t

tn

∥a(X(s))∥2 ds+ C
m∑
j=1

E

∥∥∥∥∫ t

tn

bj(X(s))dWj(s)

∥∥∥∥2

= CE

∫ t

tn

∥a(X(s))∥2 ds+ C
m∑
j=1

E

∫ t

tn

∥bj(X(s))∥2 ds

≤ C(t− tn). (14)

The equality in (13) is obtained by replacing Y tn
n+1 and tn+1 in (12) with Y tn

t

and t, respectively. (7)–(8) imply the inequality in (13). The Itô isometry (see
[3]) implies the equality in (14). The last inequality is obtained by using (7)–(8).
Note that

∥ã(t)∥2 +
∥∥∥b̃j(t)∥∥∥2 ≤ C ∥X(t)−X(tn)∥2 , (15)

which is obtained from the special type of fractions on the right hand side of

(1). For example, Ras− [RasGTP ] ≥ 0 implies Ras−[RasGTP ]

Kmk1
+Ras−[RasGTP ]

< 1.

Therefore by using (13)–(15) and Youngs inequality, the equation (12) becomes
the desired result. �

Lemma 3.3. Let X (t) , Yn+1 and Y tn
n+1 be the solutions for (2)–(4), respectively.

Then there exists a constant C such that for n = 0, · · · , N − 1,

E
⟨
X(tn+1)− Y tn

n+1, Y
tn
n+1 − Yn+1

⟩
≤ C∆

(
∆+ E∥X (tn)− Yn∥2

)
.

Proof. The equations (3) and (4) imply

E
⟨
X(tn+1)− Y tn

n+1, Y
tn
n+1 − Yn+1

⟩
= E

⟨
X (tn+1)− Y tn

n+1, X(tn)− Yn

⟩
+ E

⟨
X (tn+1)− Y tn

n+1, ϕ (X (tn))− ϕ (Yn)
⟩
, (16)

where

ϕ (Yn) = a (Yn)∆ +

m∑
j=1

bj (Yn)∆Wj (tn) . (17)

For the calculation of the first term on the right hand side of (16), the conditional
expectation is used as follows.

E
⟨
X (tn+1)− Y tn

n+1, X (tn)− Yn

⟩
= E

[
E
(⟨

X (tn+1)− Y tn
n+1, X (tn)− Yn

⟩∣∣Ftn

)]
≤
(
E
∥∥E (X (tn+1)− Y tn

n+1

∣∣Ftn

)∥∥2)1/2(E∥X(tn)− Yn∥2
)1/2

. (18)
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The inequality in (18) is obtained by using the Ftn -measurability of X (tn)−Yn

and the Cauchy Schwarz inequality. It follows from (9), the linearity of the
conditional expectation, the triangle inequality, the Jensen inequality (see [3]),
the martingale property, (15), and (14) that

E
∥∥E (X (tn+1)− Y tn

n+1

∣∣Ftn

)∥∥2
≡ E

∥∥∥∥∥∥E
∫ tn+1

tn

ã(t)dt+

m∑
j=1

∫ tn+1

tn

b̃j(t)dWj(t)

∣∣∣∣∣∣Ftn

∥∥∥∥∥∥
2

≤ CE

∥∥∥∥E (∫ tn+1

tn

ã(t)dt

∣∣∣∣Ftn

)∥∥∥∥2 + CE

∥∥∥∥∥∥E
 m∑

j=1

∫ tn+1

tn

b̃j(t)dWj(t)

∣∣∣∣∣∣Ftn

∥∥∥∥∥∥
2

= CE

∥∥∥∥∫ tn+1

tn

ã(t)dt

∥∥∥∥2 ≤ CE

(
∆

∫ tn+1

tn

∥ã(t)∥2dt
)

≤ C∆

∫ tn+1

tn

(t− tn) dt

≤ C∆3. (19)

Letting ε2n = E∥X(tn)− Yn∥2 and substituting (19) into (18), we obtain

E
⟨
X (tn+1)− Y tn

n+1, X (tn)− Yn

⟩
≤ C∆

(
∆+ ε2n

)
. (20)

Apply (17) and (19) to the last term in (16) for obtaining the upper bound

E
⟨
X (tn+1)− Y tn

n+1, ϕ (X (tn))− ϕ (Yn)
⟩

≡ E

⟨
X (tn+1)− Y tn

n+1, â(t)∆ +
m∑
j=1

b̂j(t)∆Wj(tn)

⟩

≤ C∆
3
2

E

∥∥∥∥∥∥â(t)∆ +

m∑
j=1

b̂j(t)∆Wj(tn)

∥∥∥∥∥∥
2


1/2

. (21)

By using the distribution of ∆Wj (tn) and the independence of X(tn)− Yn and
∆Wj (tn), the last term in (21) becomes

E

∥∥∥∥∥∥â(t)∆ +
m∑
j=1

b̂j(t)∆Wj(tn)

∥∥∥∥∥∥
2

≤ C∆ · E∥â(t)∥2 ≤ C∆ · ε2n, (22)

which implies, by using Youngs inequality,

E
⟨
X (tn+1)− Y tn

n+1, ϕ (X (tn))− ϕ (Yn)
⟩
≤ C∆

(
∆+ E∥X (tn)− Yn∥2

)
. (23)

Substituting (20) and (23) into (16), we obtain the desired result. �
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Lemma 3.4. Let X (t) , Yn+1 and Y tn
n+1 be the solutions for (2)–(4), respectively.

Then there exists a constant C such that for n = 0, · · · , N − 1,

E∥Y tn
n+1 − Yn+1∥2 ≤ (1 + C∆)E∥X (tn)− Yn∥2.

Proof. For simplicity, define the notations ǎ(tn) and b̌j(tn) to satisfy

Y tn
n+1 − Yn+1 = X (tn)− Yn + ǎ(tn)∆ +

m∑
j=1

b̌j(tn)∆Wj (tn) . (24)

Taking the norm and the expectation of the both sides of (24), we obtain

E
∥∥Y tn

n+1 − Yn+1

∥∥2 = ε2n + 2E

⟨
X (tn)− Yn, ǎ(tn)∆ +

m∑
j=1

b̌j(tn)∆Wj (tn)

⟩

+ E

∥∥∥∥∥∥ǎ(tn)∆ +
m∑
j=1

b̌j(tn)∆Wj (tn)

∥∥∥∥∥∥
2

. (25)

The second term on the right hand side of (25) can be written as

E

⟨
X (tn)− Yn, ǎ(tn)∆ +

m∑
j=1

b̌j(tn)∆Wj (tn)

⟩

= E

E
⟨X (tn)− Yn, ǎ(tn)∆ +

m∑
j=1

b̌j(tn)∆Wj (tn)

⟩∣∣∣∣∣∣Ftn


= E

⟨
X (tn)− Yn, ǎ(tn)∆ + E

 m∑
j=1

b̌j(tn)∆Wj (tn)

∣∣∣∣∣∣Ftn

⟩
= E⟨X (tn)− Yn, ǎ(tn)∆⟩ ≤ C∆ · ε2n,

where the last equality is obtained by using the fact thatX (tn)−Yn, ǎ(tn), b̌j(tn)
are Ftn -measurable and ∆Wj(tn) are independent of Ftn . We use CauchySchwarz
inequality and Y tn

n = X(tn) with (15) to obtain the last inequality.
Since X(tn) and Yn are independent of ∆Wj(tn), the last term on the right hand
side of (25) becomes

E

∥∥∥∥∥∥ǎ(tn)∆ +

m∑
j=1

b̌j(tn)∆Wj (tn)

∥∥∥∥∥∥
2

≤ C∆ · E ∥ǎ(tn)∥2 + C

m∑
j=1

E
∥∥b̌j(tn)∥∥2 · E (∆Wj (tn))

2

≤ C∆ · ε2n.

Therefore the proof is completed. �



Stochastic differential equation models for the ERK pathway 465

Using Lemma 3.1–Lemma 3.4, we obtain the following error estimation.

Theorem 3.5. Let X (t) and Yn be the solutions for (2)–(3), respectively. Then
there exists a constant C such that

max
0≤n≤N

E∥X (tn)− Yn∥2 ≤ C∆.

Proof. Simple algebra yields

∥X(tn+1)− Yn+1∥2 = ∥X(tn+1)− Y tn
n+1∥2

+ 2⟨X(tn+1)− Y tn
n+1, Y

tn
n+1 − Yn+1⟩+ ∥Y tn

n+1 − Yn+1∥2.

After taking the expectation and using Lemma 3.2–Lemma 3.4, we obtain

E∥X(tn+1)− Yn+1∥2

= E∥X(tn+1)− Y tn
n+1∥2

+2E
⟨
X(tn+1)− Y tn

n+1, Y
tn
n+1 − Yn+1

⟩
+ E∥Y tn

n+1 − Yn+1∥2

≤ E∥X (tn)− Yn∥2(1 + C∆) + C∆2.

Therefore the proof is completed by applying the Grownwall inequality. �

4. Numerical stability

In order to consider the stability of the numerical solution Yn of (3) with the

Definition 2, let Ŷn+1 be the corresponding solution for the equation

Ŷn+1 = Ŷn + a
(
Ŷn

)
∆+

m∑
j=1

bj

(
Ŷn

)
∆Wj (tn) . (26)

The following theorem is the stochastically numerical stability of the solution
Yn.

Theorem 4.1. Let Yn+1 and Ŷn+1 be the solutions for (3) and (26), respectively.
Then there exists a constant ∆0 such that for ϵ > 0 and ∆ ∈ (0,∆0)

lim
∥Y0−Ŷ0∥→0

sup
0≤t≤T

P
(∥∥∥Ynt − Ŷnt

∥∥∥ ≥ ϵ
)
= 0.

Proof. The Chebyshev inequality implies for ϵ > 0,

P
(∥∥∥Ynt − Ŷnt

∥∥∥ ≥ ϵ
)
≤

E

(∥∥∥Ynt − Ŷnt

∥∥∥2)
ϵ2

.

Letting D (t) = sup
0≤s≤t

E

(∥∥∥Yns − Ŷnt

∥∥∥2), we will show

D (t) ≤ CE
∥∥∥Y0 − Ŷ0

∥∥∥2 + C

∫ t

0

D(t) dt, (27)
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which completes the proof by using the Grownwall inequality: When
∥∥∥Y0 − Ŷ0

∥∥∥→
0,

P
(∥∥∥Ynt − Ŷnt

∥∥∥ ≥ ϵ
)
≤

E

(∥∥∥Ynt − Ŷnt

∥∥∥2)
ϵ2

≤ D (T )

ϵ2
≤ CE

(∥∥∥Y0 − Ŷ0

∥∥∥2)→ 0.

Define ϕn and ϕ̂n to satisfy both Yn+1 = Yn + ϕn and Ŷn+1 = Ŷn + ϕ̂n. Then

E

(∥∥∥Yns − Ŷns

∥∥∥2)
= E

(∥∥∥Y0 − Ŷ0 +

ns−1∑
n=0

E
((

ϕn − ϕ̂n

)∣∣∣Ftn

)
+

ns−1∑
n=0

{
ϕn − ϕ̂n − E

((
ϕn − ϕ̂n

)∣∣∣Ftn

)}∥∥∥2)

≤ CE
∥∥∥Y0 − Ŷ0

∥∥∥2 + CE

∥∥∥∥∥
ns−1∑
n=0

E
((

ϕn − ϕ̂n

)∣∣∣Ftn

)∥∥∥∥∥
2

+ CE

∥∥∥∥∥
ns−1∑
n=0

{
ϕn − ϕ̂n − E

((
ϕn − ϕ̂n

)∣∣∣Ftn

)}∥∥∥∥∥
2

. (28)

Apply the idea used to obtain (15) and (19) for finding the upper bound of the
last second term in (28)

E

∥∥∥∥∥
ns−1∑
n=0

E
((

ϕn − ϕ̂n

)∣∣∣Ftn

)∥∥∥∥∥
2

≤ C

ns−1∑
n=0

E

(∥∥∥Yn − Ŷn

∥∥∥2) ·∆

≤ C

∫ t

0

D(t) dt. (29)

For the last term in (28), note that for i > j

E
⟨
ϕi − ϕ̂i − E

((
ϕi − ϕ̂i

)∣∣∣Fti

)
, ϕj − ϕ̂j − E

((
ϕj − ϕ̂j

)∣∣∣Ftj

)⟩
= E

[
E
{⟨

ϕi − ϕ̂i − E
((

ϕi − ϕ̂i

)∣∣∣Fti

)
, ϕj − ϕ̂j − E

((
ϕj − ϕ̂j

)∣∣∣Ftj

)⟩∣∣∣Fti

}]
= E

⟨
E
[{

ϕi − ϕ̂i − E
((

ϕi − ϕ̂i

)∣∣∣Fti

)}∣∣∣Fti

]
, ϕj − ϕ̂j − E

((
ϕj − ϕ̂j

)∣∣∣Ftj

)⟩
= E

⟨
0 , ϕj − ϕ̂j − E

((
ϕj − ϕ̂j

)∣∣∣Ftj

)⟩
= 0, (30)

where the first and second equalities are obtained by using the definition of condi-

tional expectation and the fact that ∆Wj is independent of Fti and Yi, Yj , Ŷi, Ŷj ,

E
((

ϕj − ϕ̂j

)∣∣∣Ftj

)
are Fti -measurable. For the third equality in (30), we use
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the Fti-measurability of E
((

ϕi − ϕ̂i

)∣∣∣Fti

)
. The equation (30) and the Jensen

inequality imply that the upper bound of the last term in (28) is of the form

E

∥∥∥∥∥
ns−1∑
n=0

{
ϕn − ϕ̂n − E

((
ϕn − ϕ̂n

)∣∣∣Ftn

)}∥∥∥∥∥
2

=

ns−1∑
n=0

E
∥∥∥ϕn − ϕ̂n − E

((
ϕn − ϕ̂n

)∣∣∣Ftn

)∥∥∥2
≤ C

ns−1∑
n=0

(
E
∥∥∥ϕn − ϕ̂n

∥∥∥2 + E

[
E

(∥∥∥ϕn − ϕ̂n

∥∥∥2∣∣∣∣Ftn

)])

≤ C

ns−1∑
n=0

E
∥∥∥ϕn − ϕ̂n

∥∥∥2 ≤ C

∫ t

0

D(t) dt. (31)

Substituting (29) and (31) into (28), we obtain (27). �
Remark 4.1. The stable numerical scheme (3) will be used to show the impact
of intrinsic noise on the system dynamics for future study. Incorporation of
stochasticity into other deterministic models (see [1]) and theoretical analysis
on positivity of the solutions will be also studied in the future.
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