DOI QR코드

DOI QR Code

Temperature Dependence of Mn2+ Paramagnetic Ion in a Stoichiometric LiNbO3 Single Crystal

  • Yeom, Tae Ho (Department of Laser and Optical Information Engineering, Cheongju University) ;
  • Lee, Soo Hyung (Department of Laser and Optical Information Engineering, Cheongju University)
  • Received : 2013.05.02
  • Accepted : 2013.06.24
  • Published : 2013.09.30

Abstract

Electron paramagnetic resonance (EPR) spectra of $Mn^{2+}$ impurity ion in Stoichiometric $LiNbO_3$ single crystal (SLN) was investigated with an X-band EPR spectrometer in the temperature range of 3 K~296 K. The intensity of EPR spectrum of $Mn^{2+}$ ion was increased to 20 K and decreased again below 20 K as the temperature decreases. The zero-field splitting parameter D decreased as the temperature increases. It was suggested that $Mn^{2+}$ ion substitute for $Nb^{5+}$ ion instead of $Li^+$ ion. No changes for hyperfine interaction of $Mn^{2+}$ ion was obtained in the temperature range of 3 K~296 K.

Keywords

References

  1. I. Tomeno and S. Matsumura, J. Phys. Soc. Japan 56, 163 (1987). https://doi.org/10.1143/JPSJ.56.163
  2. K. Buse, F. Jermann, and E. Kratzig, Opt. Matter. 4, 237 (1995). https://doi.org/10.1016/0925-3467(94)00066-2
  3. D. K. McMillen, T. D. Hudson, J. Wagner, and J. Singleton, Opt. Express 2, 491 (1998). https://doi.org/10.1364/OE.2.000491
  4. J. Imbrock, S,. Wevering, K. Buse, and E. Kratzig, J. Opt. Soc. Am. B 16, 1392 (1999). https://doi.org/10.1364/JOSAB.16.001392
  5. X. Yue, A. Adibi, T. Hudson, K. Buse, and D. Psaltis, J. Appl. Phys. 87, 4051 (2000). https://doi.org/10.1063/1.373043
  6. T. Pliska, D. Fluck, and P. Gunter, in Nonlinear Optical Effects and Materials, edited by P. Gunter, Springer, Berlin (2000) pp. 479-482.
  7. T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, Opt. Lett. 25, 651 (2000). https://doi.org/10.1364/OL.25.000651
  8. R. L. Byer and J. F. Young, J. Appl. Phys. 41, 2320 (1970). https://doi.org/10.1063/1.1659225
  9. S. Kostritskii and O. Sevostyanov, Appl. Phys. B 65, 527 (1997). https://doi.org/10.1007/s003400050308
  10. M. Ohira, Z. Chen, and T. Kasanmatsu, Jpn. J. Appl. Phys. 30, 2326 (1991). https://doi.org/10.1143/JJAP.30.2326
  11. T. Tsuboi, M. Grinberg, and S. M. Kaczmarek, J. Alloys Compd. 341, 333 (2002). https://doi.org/10.1016/S0925-8388(02)00032-4
  12. Y. Yang, D. Psaltis, M. Luennemann, D. Berben, U. Hartwig, and K. Buse, J. Opt. Soc. Am. B 20, 1491 (2003). https://doi.org/10.1364/JOSAB.20.001491
  13. K. Buse, F. Jermann, and E. Kratzig, Appl. Phys. A 58, 191 (1994).
  14. E. Cantelar, J. A. Sanz-Garcia, G. Lifante, F. Cusso, and P. L. Pernas, Appl. Phys. Lett. 86, 161119 (2005). https://doi.org/10.1063/1.1887813
  15. G. Q. Zhang, G. Y. Zhang, S. M. Liu, J. J. Xu, and Q. Sun, J. Appl. Phys. 83, 4392 (1998). https://doi.org/10.1063/1.367199
  16. Y. Furukawa, K. Kitamura, Y. Ji, G. Montemezzani, M. Zgonik, C. Medrano, and P. Gunter, Opt. Lett. 22, 501 (1997). https://doi.org/10.1364/OL.22.000501
  17. F. Abdi, M. Aillerie, P. Bourson, M. D. Fontana, and K. Polgar, J. Appl. Phys. 84, 2251 (1998). https://doi.org/10.1063/1.368290
  18. Y. Furukawa, K. Kitamura, K. Niwa, and H. Hatano, Opt. Lett. 23, 1892 (1998). https://doi.org/10.1364/OL.23.001892
  19. T. Zhang, B. Wang, S. Fang, and D. Ma, J. Phys. D: Appl. Phys. 38, 2013 (2005). https://doi.org/10.1088/0022-3727/38/12/024
  20. Z. Xu and Y. Xu, Mater. Lett. 61, 3243 (2007). https://doi.org/10.1016/j.matlet.2006.11.042
  21. T. Fujiwara, M. Takahashi, M. Ohama, A. Ikushima, Y. Furukawa, and K. Kitamura, Electron. Lett. 35, 499 (1999). https://doi.org/10.1049/el:19990320
  22. V. Gopalan, T. Mitchell, Y. Furukawa, and K. Kitamura, Appl. Phys. Lett. 72, 1981 (1998). https://doi.org/10.1063/1.121491
  23. X. Chen, D. Zhu, B. Li, T. Ling, and Z. Wu, Opt. Lett. 26, 998 (2001). https://doi.org/10.1364/OL.26.000998
  24. O. F. Schirmer, O. Thiemann, and M. Wohlecke, J. Phys. Chem. Solids 52, 185 (1991). https://doi.org/10.1016/0022-3697(91)90064-7
  25. T. H. Yeom, S. H. Choh, Y. M. Chang, and C. Rudowicz, Phys. Stat. Sol. (b) 185, 409 (1994). https://doi.org/10.1002/pssb.2221850211
  26. T. H. Yeom, S. H. Lee, S. H. Choh, and D. Choi, J. Korean Phys. Soc. 32, S647 (1998).
  27. V. Grachev and G. Malovichko, Phys. Rev. B 62, 7779 (2000). https://doi.org/10.1103/PhysRevB.62.7779
  28. S. H. Lee, T. H. Yeom, and S. H. Kim, J. Magnetics 17, 251 (2012). https://doi.org/10.4283/JMAG.2012.17.4.251
  29. H. W. Shin, S. H. Choh, T. H. Yeom, and K. S. Hong, J. Korean Phys. Soc. 32, S662 (1998).
  30. M. P. Petrov, Soviet Phys.-Solid State 10, 2574 (1969).
  31. D. G. Rexford and Y. M. Kim, J. Chem. Phys. 57, 3094 (1972). https://doi.org/10.1063/1.1678725
  32. M. D. Glinchuk, G. I. Malovichko, I. P. Bykov, and V. G. Grachev, Ferroelectrics 92, 83 (1989). https://doi.org/10.1080/00150198908211311
  33. T. H. Yeom, S. H. Choh, Y. M. Chang, and C. Rudowicz, Phys. Stat. Sol. (b) 185, 417 (1994). https://doi.org/10.1002/pssb.2221850212
  34. S. C. Abrahams and P. Marsh, Acta Cryst. B 42, 61 (1986). https://doi.org/10.1107/S0108768186098567
  35. S. C. Abrahams, J. M. Reddy, and J. L. Bernstein, J. Phys. Chem. Solids 27, 997 (1966). https://doi.org/10.1016/0022-3697(66)90072-2
  36. G. Malovichko, V. Grachev, V. Kokanyan, and O. Shirmer, Phys. Rev. B 59, 9113 (1999). https://doi.org/10.1103/PhysRevB.59.9113
  37. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Oxford University Press, Oxford (1970).
  38. C. Rudowicz, Mag. Res. Rev. 13, 1 (1987).
  39. H. Karunadasa, Q. Huang, B. G. Ueland, P. Schiffer, and R. J. Cava, Proceedings of the National Academy of Sciences of the USA 100, 8097 (2003). https://doi.org/10.1073/pnas.0832394100
  40. G. Burns, J. Chem. Phys. 31, 1253 (1959). https://doi.org/10.1063/1.1730578
  41. S. H. Choh, H. T. Kim, H. K. Choh, C. S. Han, D. Choi, and J. N. Kim, Bull. Mag. Res. 11, 371 (1989).
  42. W. J. Nicholson and G. Burns, Phys. Rev. 129, 2490 (1963). https://doi.org/10.1103/PhysRev.129.2490

Cited by

  1. Structure, magnetic, and electrical properties of bismuth niobates doped with d-elements: XVIII. Magnetic susceptibility and ESR spectra of Bi2BaNb2–2xMn2xO9–δ solid solutions with layered perovskite-like structure vol.87, pp.11, 2017, https://doi.org/10.1134/S1070363217110032