DOI QR코드

DOI QR Code

Content and Distribution of Transition Metals and Rare Earth Elements in Magnetically and Mechanically Separated Brown Coal Ash

  • Malikov, Sh.R. (Institute of Nuclear Physics) ;
  • Pikul, V.P. (Institute of Nuclear Physics) ;
  • Mukhamedshina, N.M. (Institute of Nuclear Physics) ;
  • Sandalov, V.N. (Institute of Nuclear Physics) ;
  • Kudiratov, S. (Institute of Nuclear Physics) ;
  • Ibragimova, E.M. (Institute of Nuclear Physics)
  • Received : 2012.05.25
  • Accepted : 2012.12.01
  • Published : 2013.09.30

Abstract

Coal ash is known to contain a noticeable amount of valuable elements, including transition metals and lanthanides. Therefore it is quite actual problem to extract them for metallurgy and other applications. This paper presents the results of high gradient magnetic and mechanical separation, microscopy, element analyses and optical spectroscopy of brown coal ash taken from the combustion camera and chimney-stalk of Angren thermal power station. The separated magnetic fraction was 3.4 wt.%, where the content of Fe in ferrospheres increased to 58 wt.%. The highest contents of Fe and rare earth elements were found in the fine fractions of $50-100{\mu}m$. Optical absorption spectroscopy of water solutions of the magnetic fractions revealed $Fe^{2+}$ and $Fe^{3+}$ ions in the ratio of ~1:1. The separated coal ash could be used for cleaning of technological liquid waste by means of the high gradient magnetic field.

Keywords

References

  1. N. L. Rose, Environment Pollution 91, 245 (1996). https://doi.org/10.1016/0269-7491(95)00044-5
  2. L. P. Soloviev, V. V. Bulkin, M. V. Pronina, V. L. Alferov, and V. A. Pronin, Ecology & Industry of Russia 6, 4 (2011).
  3. L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, Nano Letters 4, 259 (2005).
  4. J. M. Kinsella, Sh. Ananda, J. S. Andrew, J. F. Grondek, M.-P. Chien, M. Scandeng, N. C. Gianneschi, E. Ruoslanti, and M. J. Sailor, Advanced Materials 23, H243 (2011).
  5. X. Liang, H. Shi, X. Jia, Y. Yang, and X. Liu, Materials Science & Applic. 2, 1644 (2011). https://doi.org/10.4236/msa.2011.211219
  6. A. C. Lua and R. F. Boucher, Intern. J. Coal Preparation & Utilization 8, 61 (1990). https://doi.org/10.1080/07349349008905173
  7. R. R. Oder, Proceed. of the 18-th Intern. Low Rank Fuels Symp., June 24-26, 2003, Billings, Montana.
  8. A. S. Shoumkova and V. Stoyanova, Proceed. of the X Ann. Intern. Geoconfer. - Surveying Geology and Mining Ecology Management, Albena, Bulgaria 2, 597 (2010).
  9. A. S. Shoumkova, Waste Manag. Res. 29, 1078 (2011). https://doi.org/10.1177/0734242X10379494
  10. S. Shumkov and A. Shoumkova, Proceed. of the 18-th Intern. Low Rank Fuels Symp., Billings, Montana (2003).
  11. N. M. Mukhamedshina and A. A. Mirsagatova, J. Applied Radiation & Isotopes 63, 715 (2005). https://doi.org/10.1016/j.apradiso.2005.05.034
  12. N. M. Mukhamedshina and A. A. Mirsagatova, Uzbek J. Physics 8, 117 (2006).
  13. Handbook on Geochemistry, Nedra, Moscow (1990) Table 40.
  14. A. N. Trukhin, J. Non-Cryst. Solids 352, 3002 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.04.012
  15. G. Vaccaro, G. Buscarino, S. Agnello, A. Sporea, C. Oproiu, D. G. Sporea, and F. M. Gelardi, J. Physics & Chemistry C 116, 144 (2012). https://doi.org/10.1021/jp2073842