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SOME PROPERTIES OF SCHENSTED ALGORITHM

USING VIENNOT’S GEOMETRIC INTERPRETATION

Jaejin Lee

Abstract. Schensted algorithm was first described in 1938 by Robin-
son [5], in a paper dealing with an attempt to prove the correctness
of the Littlewood-Richardson rule. Schensted [9] rediscovered Schen-
sted algorithm independently in 1961 and Viennot [12] gave a geo-
metric interpretation for Schensted algorithm in 1977. In this paper
we describe some properties of Schensted algorithm using Viennot’s
geometric interpretation.

1. Introduction

Let λ = (λ1, λ2, . . . , λl) be a partition of the nonnegative integer n,
denoted λ ` n, so λ is a weakly decreasing sequence of positive integers
summing to n. We will also let λ stand for the Ferrers diagram Dλ of
λ written in English notation with λi nodes or cells in the ith row from
the top.

Given λ ` n, a standard Young tableau T of shape λ is a filling of the
diagram Dλ with positive integers 1, 2, . . . , n such that rows and columns
strictly increase. For example,
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Received July 4, 2013. Revised August 1, 2013. Accepted August 2, 2013.
2010 Mathematics Subject Classification: 05E10.
Key words and phrases: partition, standard Young tableau, P -tableau, Q-tableau,

Schensted algorithm.
c© The Kangwon-Kyungki Mathematical Society, 2013.
This is an Open Access article distributed under the terms of the Creative com-

mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by
-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduc-
tion in any medium, provided the original work is properly cited.



224 Jaejin Lee

is a standard Young tableau of the shape (3, 2, 2).
There is a remarkable combinatorial correspondence associated with

the theory of symmetric functions, called the Schensted algorithm.

Theorem 1.1. (Schensted algorithm) Let Sn be the symmetric
group of degree n. Then there is a bijection

π 7→ (P,Q)

between permutations π of Sn and the set of all pairs (Pλ , Qλ) of
standard Young tableaux of the same shape λ, where λ ` n.

It was first described in 1938 by Robinson [5], in a paper dealing
with an attempt to prove the correctness of the Littlewood-Richardson
rule. Schensted algorithm was rediscovered independently by Schen-
sted [9] in 1961, whose main objective was counting permutations with
given lengths of their longest increasing and decreasing subsequences.
Schensted correspondence about increasing and decreasing subsequences
is extended by C. Greene [2], to give a direct interpretation of the
shape of the standard Young tableaux corresponding to a permuta-
tion. The combinatorial significance of Schensted algorithm was indi-
cated by Schützenberger [11], who introduced the evacuation algorithm.
Knuth [4] gave a generalization of the Schensted algoritm, where stan-
dard Young tableaux are replaced by column strict tableaux, and permu-
tations are replaced by multi-permutations. And he described conditions
for two permutation to have the same P -tableaux under Schensted al-
gorithm. In [12] Viennot gave a geometric interpretation for Schensted
algorithm.

After Knuth generalized Schensted algorithm to column strict table-
aux, various analogs of the Schented algorithm came: versions for rim
hook tableaux [10], shifted tableaux ([6]), oscillating tableaux [1], skew
tableaux [8], and shifted rim hook tableaux [3].

The bijection in Theorem 1.1 is denoted π ↔ (P,Q) or π
[S]7−→

(P (π), Q(π)) and P (π), Q(π) are called the P -tableau and Q-tableau of
π, respectively. For example, if π = 3 a 7 b 2 4 d 5 e 9 1 6 c 8 ∈ S14,
then the P -tableau and Q-tableau of π are given as

π
[S]7−→ (P (π), Q(π)) =


1 4 5 6 8
2 7 9 c e
3 b d
a

,

1 2 4 7 9
3 6 8 a d
5 c e
b


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where a = 10, b = 11, c = 12, d = 13 and e = 14.
In this paper we describe the ways to find P -tableaux and Q-tableaux

of permutations πr, π∗ and π# without using Schützenberger’s evacu-
ation algorithm.

Section 2 gives Viennot’s geometric interpretation for Schensted al-
gorithm. In Section 3 we describe the ways to find P -tableaux and
Q-tableaux of permutations πr, π∗ and π# using Viennot’s geometric
interpretation for Schensted algorithm.

2. Geometric interpretation for Schensted algorithm

In this section we describe Viennot’s geometric interpretation for
Schensted algorithm. See [12] or [7] for further exposition.

Example 2.1. Let

π = 4 2 3 6 5 1 7 ∈ S7

• Consider the first quadrant of the Cartesian plane. Given a per-
mutation π = x1x2 · · · xn, represent xi by a box with coordinates
(i, xi). See the figure 1.
• Imagine a light shining from the origin so that each box casts

a shadow with boundaries parallel to the coordinate axes. The
shadow cast by the box at (4, 6) looks like the figure 2.
• Consider those points of the permutation that are in the shadow

of no other point. In this case (1, 4), (2, 2), and (6, 1). The first
shadow line, L1, is the boundary of the combined shadows of these
boxes. In the figure 3, the appropriate line has been thickened.
Note that this is a broken line consisting of line segments and
exactly one horizontal and one vertical ray. To form the second
shadow line, L2, one removes the boxes on the first shadow line
and repeats this procedure.

Given a permutation displayed in the plane, we form its shadow lines
L1, L2, . . . as follows. Assuming that L1, . . . , Li−1 have been con-
structed, remove all boxes on these lines. Then Li is the boundary
of the shadow of the remaining boxes. The x-coordinate of Li is

xLi
= the x-coordinate of Li’s vertical ray

and the y-coordinate is
yLi

= the y-coordinate of Li’s horizontal ray
The shadow lines make up the shadow diagram of π.
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Figure 1. The coordinates (i, xi) of π.
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•

Figure 2. The shadow at (4, 6).
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•

•
• L1

Figure 3. The first shadow line, L1.
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Example 2.2. In the previous example, there are four shadow lines,
and their x- and y-coordinates are shown above and to the left of the
figure 4, respectively.

0 1 2 3 4 5 6 7

1
2
3
4
5
6
7

• ♦

• ♦
•

•

• ♦
•

•

L1

L2

L3

L4

⇑
1

3

5

7

⇒ 1 3 4 7

Figure 4. Four shadow lines for π = 4236517

Compare the coordinates of our shadow lines with the first rows of the
tableaux

P (π) =
1 3 5 7
2 6
4

and Q(π) =
1 3 4 7
2 5
6

computed by Schensted Algorithm. It seems as if

P1,j = yLj
and Q1,j = xLj

for all j.
In fact, even more is true. The boxes on line Lj are precisely those
elements passing through the (1, j) cell during the construction of P , as
the next result shows.

Lemma 2.3. Let the shadow diagram of π = x1x2 · · · xn be con-
structed as before. Suppose the vertical line x = k intersects i of the
shadow lines. Let yj be the y-coordinate of the lowest point of the in-
tersection with Lj. Then the first row of the Pk = P (x1 . . . xk) is

(1) R1 = y1y2 · · · yi

Proof. : See [7].
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Example 2.4. Let π = 4 2 3 6 5 1 7, then

P0 = ∅ P1 = 4 P2 =
2
4

P3 =
2 3
4

P4 =
2 3 6
4

P5 =
2 3 5
4 6

P6 =
1 3 5
2 6
4

P7 =
1 3 5 7
2 6
4

(Case 1) k = 3, P3 = P (x1x2x3) = P (423) =
2 3
4

, R1 = y1y2

Then xk+1 = x4 = 6 > 3 = y2 and so (k + 1, xk+1) = (4, 6) starts a new
shadow line. Hence, y3 = x4 = 6.

0 1 2 3 4 5 6 7

1
2
3
4
5
6
7

•

•
•

2
3

=⇒

0 1 2 3 4 5 6 7

1
2
3
4
5
6
7

•

•
•

•

2
3

6

(Case 2) k = 4, P4 = P (4236) =
2 3 6
4

, R1 = 236 = y1y2y3

Then y1 < · · · < yj−1 < x5 = 5 < yj < · · · < y3 = 6 and so
(k + 1, xk+1) = (5, 5) is added to line Lj. Hence, y′j = xk+1 = x5 = 5.

0 1 2 3 4 5 6 7

1
2
3
4
5
6
7

•

•
•

•

2
3

6

=⇒

0 1 2 3 4 5 6 7

1
2
3
4
5
6
7

•

•
•

•
•

2
3

5
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It follows from the previous lemma that the shadow diagram of π can
be read left to right like a time-line recording the construction of P (π).
At the k-th stage, the line x = k intersects one shadow line in a ray
or line segment and all the rest in single points. In terms of the first
row of Pk: a ray corresponds to placing an element at the end, a line
segment corresponds to displacing an element, and the points correspond
to elements that are unchanged.

Corollary 2.5. If the permutation π has Schensted tableaux (P,Q)
and shadow lines Lj, then, for all j,

P1,j = yLj
and Q1,j = xLj

.

Proof. See [7].

Example 2.6. Let

π = 4 2 3 6 5 1 7 ∈ S7

Then the first, second and third rows come from the thickened and
dashed lines, respectively, of the figure 5, 6 and 7.

0 1 2 3 4 5 6 7

1
2
3
4
5
6
7

• ♦

• ♦
•

•

• ♦
•

•

1

3

5

7

1 3 4 7

⇑

⇒

Figure 5. The first row of P and Q.

The i-th skeleton of π ∈ Sn, π(i) , is defined inductively by π(1) = π and

π(i) =
k1 k2 · · · km
l1 l2 · · · lm

where (k1, l1), . . . , (km, lm) are the NorthEast corners of the shadow di-
agram of π(i−1) listed in lexicographic order. The shadow lines for π(i)

are denoted Lj
(i).
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6
7

♦

♦

♣

♦

2

6

2 5

⇑

⇒

Figure 6. The second row of P and Q.

0 1 2 3 4 5 6 7

1
2
3
4
5
6
7

4

6

♣

⇑

⇒

Figure 7. The third row of P and Q.

Example 2.7. Let π = 4 2 3 6 5 1 7 and

(P,Q) =

1 3 5 7
2 6
4

,
1 3 4 7
2 5
6

 .

π(2) =
2 5 6
4 6 2

, where {4, 6, 2} and {2, 5, 6} are the remainder except

for the first row of P and Q, respectively.

P1,j = y
L
(1)
j

= y
L
(1)
1
y
L
(1)
2
y
L
(1)
3
y
L
(1)
4

= 1 3 5 7

Q1,j = x
L
(1)
j

= x
L
(1)
1
x
L
(1)
2
x
L
(1)
3
x
L
(1)
4

= 1 3 4 7
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0 1 2 3 4 5 6 7

1
2
3
4
5
6
7

•

•

•
L

(1)
1

L
(1)
2

L
(1)
3

L
(1)
4

0 1 2 3 4 5 6 7

1
2
3
4
5
6
7

•

L
(2)
1

L
(2)
1

π(3) =
6
4

, where 4 and 6 are the remainder except for the first, second

rows of P and Q, respectively.

P2,j = y
L
(2)
j

= y
L
(2)
1
y
L
(2)
2

= 2 6 , Q2,j = x
L
(2)
j

= x
L
(2)
1
x
L
(2)
2

= 2 5

Continuing this processing , P3,j = y
L
(3)
1

= 4 , Q3,j = x
L
(3)
1

= 6.

Theorem 2.8. Suppose π → (P,Q). Then π(i) is a partial permuta-
tion such that

π(i) → (P (i), Q(i))

where P (i) (respectively, Q(i)) consists of the rows i and below of P
(respectively, Q). Furthermore,

Pi,j = y
L
(i)
j

and Qi,j = x
L
(i)
j

for all i, j.

Proof. See [7].

3. Main results

Given a permutation π = x1x2 · · ·xn−1xn ∈ Sn, we define new per-
mutations πr, π∗ and π# as follows.

πr = xnxn−1 · · · x2x1
π∗ = (n+ 1− x1)(n+ 1− x2) · · · (n+ 1− xn−1)(n+ 1− xn)

π# = (n+ 1− xn)(n+ 1− xn−1) · · · (n+ 1− x2)(n+ 1− x1).

Note that (π∗)r = π#. Until now we used Schützenberger’s evacua-
tion algorithm to compute P -tableaux and Q-tableaux of permutations
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πr, π∗ and π#. See [7] for detail. In this section we describe the ways to
find P -tableaux and Q-tableaux of permutations πr, π∗ and π# directly
from Viennot’s geometric interpretation for Schensted algorithm.

Given a permutation π ∈ Sn, let π
[S]←→ (P,Q). Then we can find

P -tableaux and Q-tableaux of permutations πr, π∗ and π# as the fol-
lowing propositions.

Proposition 3.1. Let π∗
[S]←→ (P ∗, Q∗). Then (P ∗, Q∗) can be ob-

tained as follows:

1. Imagine a light shining from (0, n+ 1) and get a new shadow dia-
gram of π.

2. Change any coordinate yLi
to (n+ 1)− yLi

.
3. P -tableaux and Q-tableaux are obtained similarly as if we read the

original shadow diagram of π.

Example 3.2. Let π = 4 2 3 6 5 1 7. Then,

π
[S]←→ (P,Q) =

 1 3 5 7
2 6
4

,
1 3 4 7
2 5
6

 .

By the reading coordinate steps of Figure 8 and 9, we obtain that

(P ∗, Q∗) =


1 3 7
2 5
4
6

,

1 2 6
3 5
4
7


Note that P ∗ = (ev (P ))t and Q∗ = Qt.

Proposition 3.3. Let πr
[S]←→ (P r, Qr). Then (P r, Qr) can be ob-

tained as follows:

1. Imagine a light shining from (n+ 1, 0) and get a new shadow dia-
gram of π.

2. Change any coordinate xLi
to (n+ 1)− xLi

.
3. P -tableaux and Q-tableaux are obtained similarly as if we read the

original shadow diagram of π.
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1 2 3 4 5 6 7

1
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=⇒

1 → 7

5 → 3

7 → 1

•

•
•

•
•

•

•

⇓

⇒

♦

♦
♦

♦

1 2 3 4 5 6 7

1
2
3
4
5
6
7

3 → 5

6 → 2

⇓

⇒

♦

♦
♦

♦

♣

♣

Figure 8. First and Second rows for π∗

1 2 3 4 5 6 7

1
2
3
4
5
6
7

=⇒4 → 4

⇓

⇒

♣

♣

♥

1 2 3 4 5 6 7

1
2
3
4
5
6
7

2 → 6

⇓

⇒

♥

Figure 9. Third and Fourth rows for π∗

Example 3.4. Let π = 4 2 3 6 5 1 7. By the reading coordinate steps
of Figure 10 and 11, we obtain that

(P r, Qr) =


1 2 4
3 6
5
7

,

1 3 4
2 7
5
6


Note that P r = P t and Qr = (ev (Q))t.

Proposition 3.5. Let π]
[S]←→ (P ], Q]). Then (P ], Q]) can be ob-

tained as follows:

1. Imagine a light shining from (n + 1, n + 1) and get a new shadow
diagram of π.
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1 2 3 4 5 6 7

1
2
3
4
5
6
7

=⇒

4
↑
4

5
↑
3

7
↑
1

•

•
•

•
•

•

•

⇑

⇐

♦

♦

♦

♦

1 2 3 4 5 6 7

1
2
3
4
5
6
7

6
↑
2

1
↑
7

⇑

⇐

♦

♦

♦

♦

♣

♣

Figure 10. First and Second rows for πr

1 2 3 4 5 6 7

1
2
3
4
5
6
7

=⇒

3
↑
5

⇑

⇐

♥

♣

♣

1 2 3 4 5 6 7

1
2
3
4
5
6
7

2
↑
6

⇑

⇐

♥

Figure 11. Third and Fourth rows for πr

2. Change any coordinate xLj
and yLi

to (n+ 1)− xLj
and

(n+ 1)− yLi
, respectively.

3. P -tableaux and Q-tableaux are obtained similarly as if we read the
original shadow diagram of π.

Example 3.6. Let π = 4 2 3 6 5 1 7. By the reading coordinate steps
of Figure 12 and 13, we obtain that

(P ], Q]) =

 1 2 4 6
3 5
7

,
1 2 5 6
3 7
4


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Note that P ] = ev (P ) and Q] = ev (Q).

=⇒

1 2
↓
6

3
↓
5

4 5 6
↓
2

7
↓
1 ⇐

1
6 ← 2

3
4 ← 4

5
2 ← 6
1 ← 7

⇓

•

•
•

•
•

•

•

♦

♦

♦

1
↓
7

2 3 4 5
↓
3

6 7

⇐

1
2

5 ← 3
4

3 ← 5
6
7

⇓

♣

♦

♦

♦

Figure 12. First and Second rows for π]

1 2 3 4
↓
4

5 6 7

⇐

7 ← 1
2
3
4
5
6
7

⇓

♣

Figure 13. Third row for π]
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