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MEASURE INDUCED BY THE PARTITION OF THE

GENERAL REGION

Joo Sup Chang and Byoung Soo Kim

Abstract. In this paper we first consider the partition of the gen-
eral region made by the monotonically increasing and continuous
function and then obtain the measure from the partition of the re-
gion. The results obtained here is a little bit different from the
previous results in [1, 2, 3] and finally we discuss the difference.

1. Introduction

Kitagawa [6] introduced the Wiener space of functions of two variables
which is the collection of the continuous functions f(x, y) on the unit
square [0, 1]× [0, 1] satisfying f(x, y) = 0 for xy = 0. Yeh [8] treated the
integration on this space for the more general function and made a firm
logical foundation of this space, called a Yeh-Wiener space.

In [9], Yeh introdeced the conditional Wiener integral for real val-
ued conditioning function and evaluated it using the inversion formulae.
Chang, Ahn and the first author [4] treated the conditional Yeh-Wiener
integral for real valued conditioning function. Furthermore, Park and
Skoug [7] considered the conditional Yeh-Wiener integral for vector val-
ued conditioning function and evaluated it using the simple formula.

Yeh-Wiener measure space ([4, 6, 7, 8]) comes from the rectangle made
by the constant function. But, the modified and the generalized measure
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space ([1, 2, 3]) was obtained by the general region rather than the rec-
tangle. They used a strictly decreasing and a monotonically decreasing
function to obtain the region.

In this paper we use the monotonically increasing and continuous
function to get a general region and obtain the partition of the region.
And we also make a measure from the partition of the generalized region.
The results obtained here is a little bit different from the results in
[1, 2, 3] and finally we discuss the difference.

2. Partition of the general region

Let g be a monotonically increasing and continuous function on [a, b]
with g(a) ≥ 0. Then g can be sectionally constant or strictly increasing
on [a, b].

Let {s0, s1, . . . , sk+1} be a partition of [a, b] satisfying

(i) a = s0 < s1 < · · · < sk < sk+1 = b.

(ii) g is either constant or strictly increasing

on Ii ≡ [si−1, si].

(iii) g is not constant or strictly increasing on

two consecutive intervals Ii and Ii+1.

(2.1)

Then the partition points si depends on the function g. Let {x0, x1, . . . ,
xm} be a partition of [a, b] including the points in (2.1) and satisfying

a = x0 < x1 < · · · < xl1 = s1 < xl1+1 < · · ·
< xl1+l2 = s2 < · · · < xl1+···+lk = sk < · · ·
< xm = sk+1 = b,

(2.2)

where l1 + · · ·+ lk+1 = m and li ≥ 1 for i = 1, 2, . . . , k+ 1. The notation
(2.2) is similar but slightly different from the notation used in [5]. In [5],
the notation was used to consider a Feynman’s time ordered operational
calculus. For notational convenience, let

(2.3) k̂ =

{
k + 1, if k is odd

k, if k is even.

There are two cases for which g is constant or strictly increasing on
I1. We first assume that g is constant on I1. Then, from the partition
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{x0, x1, . . . , xm} satisfying the conditions (2.1) and (2.2), we can make
a partition {y0, y1, . . . , yn} of [0, g(b)] satisfying

(i) 0 = y0 < y1 < · · · < yp = g(a) < · · · < yn = g(b) for p ≥ 0.

(ii) yp+l2+···+l2i−2
= g(x) on I2i−1 for i = 1, 2, . . . ,

1

2
̂(k + 1).

(iii) yp+l2+l4+···+l2i−2+q = g(xl1+l2+···+l2i−1+q)

for i = 1, 2, . . . ,
1

2
k̂, and 1 ≤ q ≤ l2i.

(2.4)

Let {tn} be a sequence satisfying

0 = t0 < yp = t1 < yp+l2 = t2 < yp+l2+l4 = t3 < · · ·
< yp+l2+···+l

k̂
= yn.

(2.5)

Then yn = t1+k̂/2 and we have

0 = t0 < y1 < · · · < yp = t1 < yp+1 < · · ·
< yp+l2 = t2 < · · · < yp+l2+l4···+l

k̂
= yn,

(2.6)

where yp = g(a) and yn = g(b).
We summarize the above consideration in the following theorem.

Theorem 2.1. Let Ωg be the region given by

(2.7) Ωg = {(x, y) : a ≤ x ≤ b, 0 ≤ y ≤ g(x)},

where g is monotonically increasing and continuous on [a, b] with g(a) ≥
0 and g is constant on I1 in (2.1). Then we can obtain the partition Λ
of the region Ωg by

Λ = {(xi, yji) : i = 0, 1, . . . ,m, and ji = 0, 1, . . . , q

such that yq = g(xi)},
(2.8)

where x0, x1, . . . , xm are given by (2.2) and y0, y1, . . . , yn are given by
(2.4).

In the partition Λ of the above theorem, the points

(s0, t1), (s1, t1), (s2, t2), . . . , (sk+1, t1+k̂/2)

of the region Ωg play an important role to understand the shape of the
monotonically increasing and continuous function g.
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Remark 2.2. For the region Ωg in Theorem 2.1, let C(Ωg) denote the
space of all real valued continuous functions f on Ωg satisfying f(x, 0) =
f(a, y) = 0 for all a ≤ x ≤ b and 0 ≤ y ≤ g(a). Then the special space
C(Ωg) with k = 0 and g(a) > 0 in (2.1) is the Yeh-Wiener measure
space.

Remark 2.3. Let g be a strictly increasing function on I1 in (2.1).
Then, for the partition {x0, x1, . . . , xm} of [a, b] satisfying the condition
(2.2), we have the corresponding partition {y0, y1, . . . , yn} of [0, g(b)]
which satisfies

(i) 0 = y0 < y1 < · · · < yp = g(a) < · · · < yn = g(b) for p ≥ 0

(ii) yp+l1+l3+···+l2i−1
= g(x) on I2i for i = 1, 2, . . . ,

1

2
k̂

(iii) yp+l1+l3+···+l2i−1+q = g(xl1+l2+···+l2i+q)

for i = 0, 1, . . . ,
1

2
̂(k − 1) and 0 ≤ q ≤ l2i+1,

(2.9)

where l0 = l−1 = 0 and 0̂ = −̂1 = 0.

3. Measure of the cylinder set

Let Λ be the partition of the general region Ωg in Theorem 2.1 which
has the even number k in (2.1). Let N be the number of elements in the
partition Λ excluding the points on the lines x = a and y = 0, and let
XΛ be a random vector from C(Ωg) to RN defined by

XΛ(f) = (f(xi, yji) : i = 1, . . . ,m and ji = 1, . . . , q

such that yq = g(xi)}.
(3.1)

Let J be the cylinder set of the type

(3.2) J = {f ∈ C(Ωg) : XΛ(f) ∈ B}

for B in BN , the Borel σ-algebra of RN .
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To make a measure of J , we first use the partition Λ of the region Ωg

and consider

A(Λ) = [(x1 − a) · · · (s1 − xl1−1)]p

[(xl1+1 − s1)p+1 · · · (s2 − xl1+l2−1)p+l2 ] · · ·
[(xLk−1+1 − sk−1)Ek−2+1 · · · (sk − xLk−1)Ek ]

[(xLk+1 − sk) · · · (b− xm−1)]n

[y1(y2 − y1) · · · (t1 − yp−1)]m

[(yp+1 − t1)m−l1 · · · (yp+l2 − yp+l2−1)m−l1−l2+1] · · ·
[(yEk−2+1 − yEk−2

)lk+lk+1 · · · (yn − yn−1)lk+1+1],

(3.3)

where Li = l1 + l2 + · · ·+ li for i = 1, 2, . . . , k, and Ei = p+ l2 + l4 + · · ·+ li
for i = 2, 4, . . . , k. And if we let ∆ix = xi − xi−1, ∆jy = yj − yj−1 and
∆iju = ui,j − ui,j−1 − ui−1,j + ui−1,j−1, then we have

B(Λ, ~u) =

l1∑
i=1

p∑
j=1

(∆iju)2

2∆ix∆jy
+

l1+l2∑
i=l1+1

p−l1+i∑
j=1

(∆iju)2

2∆ix∆jy
+ · · ·

+

l1+···+lk∑
i=l1+···+lk−1+1

p+l2+···+lk−2−l1−···−lk−1+i∑
j=1

(∆iju)2

2∆ix∆jy

+
m∑

i=l1+···+lk+1

n∑
j=1

(∆iju)2

2∆ix∆jy

=

l1∑
i=1

p∑
j=1

(∆iju)2

2∆ix∆jy
+

L2∑
i=l1+1

p−l1+i∑
j=1

(∆iju)2

2∆ix∆jy
+ · · ·

+

Lk∑
i=Lk−1+1

Ek−2−Lk−1+i∑
j=1

(∆iju)2

2∆ix∆jy
+

m∑
i=Lk+1

n∑
j=1

(∆iju)2

2∆ix∆jy
.

(3.4)

Expressions (3.3) and (3.4) are complicate to understand. Hence we
will illustrate Λ, A(Λ) and B(Λ, ~u) by an example.

Example 3.1. Let g be a monotonically increasing and continuous
function defined on [a, b] such that g(x) = t1 for a ≤ x ≤ s1, g is linear
on [s1, s2] and g(x) = t2 for s2 ≤ x ≤ b, where a = s0 < s1 < s2 < s3 = b
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and 0 ≤ t1 < t2. Let {x0, x1, . . . , x5} be a partition of [a, b] such that

a = x0 < x1 < x2 = s1 < x3 < x4 = s2 < x5 = s3 = b

and let {y0, y1, . . . , y4} be a partition of [0, t2] such that

0 = y0 < y1 < y2 = t1 = g(a) < y3 < y4 = t2 = g(b).

Then
Λ = {(x0, y0), (x0, y1), (x0, y2), (x1, y0), . . . , (x5, y4)}.

Note that Λ has 23 elements and N = 15. In this case

A(Λ) = (x1 − a)2(x2 − x1)2(x3 − x2)3(x4 − x3)4(x5 − x4)4

(y1 − y0)5(y2 − y1)5(y3 − y2)3(y4 − y3)2

and

B(Λ, ~u) =
2∑

i=1

2∑
j=1

(∆iju)2

2∆ix∆jy
+

4∑
i=3

i∑
j=1

(∆iju)2

2∆ix∆jy
+

4∑
j=1

(∆5ju)2

2∆5x∆jy
,

where ui,0 = u0,j = 0 for i = 0, 1, . . . , 5 and j = 0, 1, 2, and u2,3 = u3,4 =
0.

Theorem 3.2. Let Λ be the partition of the region Ωg in Theorem
2.1 with an even number k in (2.1), and let J be the cylinder set given
by (3.2). Then we can make a measure m̃ of a set J by

(3.5) m̃(J) =

∫
B

W (Λ, ~u) d~u

where

(3.6) W (Λ, ~u) = {(2π)NA(Λ)}−1/2 exp{−B(Λ, ~u)}
for ~u in RN , and A(Λ) and B(Λ, ~u) are given by (3.3) and (3.4), respec-
tively.

Let J be the collection of subsets of type J . Then it can be shown
that J is a semi-algebra of subsets of C(Ωg) and the set function m̃
is a measure defined on J and the factor W (Λ, ~u) is chosen to make
m̃(C(Ω)) = 1. The measure m̃ can be extended to a measure on the
Carathedory extension of interval class J in the usual way.

In [3], for a monotonically decreasing function g, Chang and Ahn used
a partition of the region Ωg to define a probability measure on C(Ωg). At
first, we tried a similar method as in [3] for a monotonically increasing
function g, that is, we define A(Λ) and B(Λ, ~u) by the same way as in
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equation (2.7) of [3]. In this case, for the same partition Λ as in Example
3.1, A(Λ) and B(Λ, ~u) are given by

A(Λ) = (x1 − a)2(x2 − x1)2(x3 − x2)2(x4 − x3)3(x5 − x4)4

(y1 − y0)5(y2 − y1)5(y3 − y2)2(y4 − y3)

and

B(Λ, ~u) =
2∑

i=1

2∑
j=1

(∆iju)2

2∆ix∆jy
+

4∑
i=3

i−1∑
j=1

(∆iju)2

2∆ix∆jy
+

4∑
j=1

(∆5ju)2

2∆5x∆jy
,

that is, the exponent in A(Λ) here is different from A(Λ) in Example 3.1
and we do not use the variables u2,3 and u3,4 in B(Λ, ~u). But such an
attempt was unsuccessful as one can see in the following example.

Example 3.3. Let g be a monotonically increasing function defined
on the interval [0, 3] as follows.

g(x) =


1, 0 ≤ x ≤ 1

x, 1 ≤ x ≤ 2

2, 2 ≤ x ≤ 3

Let the partition of [0, 3] to be s0 = 0, s1 = 1, s2 = 2 and s3 = 3. Then
t0 = 0, t1 = 1 and t2 = 2. Let Λ be the following partition of Ωg.

Λ = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2)}

Then equation (2.7) of [3] suggests A(Λ) and B(Λ, ~u) as

A(Λ) = s1(s2 − s1)(s3 − s2)2t31(t2 − t1) = 1

and

B(Λ, ~u) =
1

2
[(∆11u)2 + (∆21u)2 + (∆31u)2 + (∆32u)2]

=
1

2
[u2

1,1 + (u2,1 − u1,1)2 + (u3,1 − u2,1)2

+ (u3,2 − u3,1 − u2,2 + u2,1)2],
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since ui,0 = u0,j = 0 for i = 0, 1, 2, 3 and j = 0, 1. Note that N = 5, and
so by (3.5) the measure m̃(C(Ωg)) can be ginen as follows.

m̃(C(Ωg)) =

∫
R5

W (Λ, ~u) d~u

= (2π)−5/2

∫
R5

exp
{
−1

2
[u2

1,1 + (u2,1 − u1,1)2

+ (u3,1 − u2,1)2 + (u3,2 − u3,1 − u2,2 + u2,1)2]
}
d~u,

where d~u = du1,1 du2,1 du2,2 du3,1 du3,2. Now evaluating the last integral,
we have

m̃(C(Ωg)) = (2π)−1/2

∫
R

1 du2,2 =∞.

That is, a similar method as in [3] for a monotonically increasing function
g fails to construct a measure.

Hence, in this paper, we modified A(Λ) and B(Λ, ~u) for a monoton-
ically increasing function g as in (3.3) and (3.4), respectively. In the
following example, we will show that our construction gives a probabil-
ity measure on Ωg for the same function g and partition Λ as in Example
3.3.

Example 3.4. Let g and Λ be the same as in Example 3.3. Then
A(Λ) and B(Λ, ~u) in (3.3) and (3.4), respectively, can be expressed as

A(Λ) = s1(s2 − s1)2(s3 − s2)2t31(t2 − t1)2 = 1

and

B(Λ, ~u) =
1

2
[(∆1,1u)2 + (∆2,1u)2 + (∆2,2u)2 + (∆3,1u)2 + (∆3,2u)2]

=
1

2
[u2

1,1 + (u2,1 − u1,1)2 + (u2,2 − u2,1 + u1,1)2

+ (u3,1 − u2,1)2 + (u3,2 − u3,1 − u2,2 + u2,1)2],
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since ui,0 = u0,j = 0 for i = 0, 1, 2, 3 and j = 0, 1, and u1,2 = 0. Hence
by (3.5) the measure m̃(C(Ωg)) can be evaluated as

m̃(C(Ωg)) =

∫
R5

W (Λ, ~u) d~u

= (2π)−5/2

∫
R5

exp
{
−1

2
[u2

1,1 + (u2,1 − u1,1)2

+ (u2,2 − u2,1 + u1,1)2 + (u3,1 − u2,1)2

+ (u3,2 − u3,1 − u2,2 + u2,1)2]
}
d~u

= 1.

That is, we can construct a probability measure on C(Ωg) for a mono-
tonically increasing function g.

Remark 3.5. In [3], the region was made by the monotonically de-
creasing function. As we can see in Example 3.3 and Example 3.4, A(Λ)
and B(Λ, ~u) in (3.3) and (3.4) are quite different to make a measure if
the function g is monotonically increasing or monotonically decreasing.

Remark 3.6. In this paper we use an even number k, but we can
also obtain the similar result for an odd number k without any problem.
Furthermore, we can consider a monotonically increasing function which
is strictly increasing on I1 using Remark 2.3.

Remark 3.7. The results of this paper will be useful to investigate
the generalized conditional Yeh-Wiener integral.
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