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INFINITUDE OF MINIMALLY SUPPORTED TOTALLY

INTERPOLATING BIORTHOGONAL MULTIWAVELET

SYSTEMS WITH LOW APPROXIMATION ORDERS

Youngwoo Choi and Jaewon Jung∗

Abstract. By analyzing one-parameter families of totally interpo-
lating multiwavelet systems of minimal total length with low ap-
proximation orders, whose explicit formulas were obtained with the
aid of well-known relations of filters, we demonstrate the infinitude
of such systems.

1. Introduction

Wavelet theory has been a popular tool in signal/image processing,
computer graphics, and many other applied mathematics. A wavelet is
based on multiresolution analysis(MRA) derived from one scaling func-
tion [6]. The Haar scaling function is the only orthogonal scaling function
of compact support having symmetry and Shannon-like sampling prop-
erties [16]. Therefore, multiwavelet theory or biorthogonal wavelets have
been studied to achieve many desirable properties such as orthogonality,
symmetry, short support, and approximation order, simultaneously.

Totally interpolating multiwavelet systems have many advantages.
The interpolating condition provides Shannon-like sampling property
[12, 13] and perfect and fast reconstruction/decomposition algorithm
in signal processing [17]. Moreover, under the interpolating condition
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the equivalence of approximation and balancing orders was proved in
terms of orthogonal/biorthogonal multiwavelet systems [1, 7–9]. There-
fore, a prefiltering can be avoided with a totally interpolating orthogo-
nal/biorthogonal multiwavelet system satisfying a suitable approxima-
tion order condition [14, 15]. It is well-known that both approximation
order and short support conditions are important properties for applica-
tions such as denoising and compression. In this article, we are mainly
concerned with totally interpolating biorthogonal multiwavelet systems
having minimal support and approximation order property.

One can find sufficiently many refinable function vectors. For exam-
ple, a one-parameter family of interpolating refinable function vectors
with a given approximation order is constructed in [7]. Nevertheless, it
is difficult to know how many interpolating multiwavelet systems there
are that satisfy suitable regularity and stability. There are many totally
interpolating orthogonal/biorthogonal multiwavelet systems of minimal
total length for some given approximation orders [2, 3, 7, 12, 17]. Natu-
rally, we are concerned about a question how many such systems there
are. In this article, we investigate the cardinality of L2-stable totally in-
terpolating biorthogonal multiwavelet systems of minimal total length.
Under FIR condition a degree of freedom provides the possibility of infin-
itely many totally interpolating biorthogonal multiwavelet systems from
a suitable perturbation without lengthening their supports.

This paper is organized as follows. The second section introduces
elementary notions of biorthogonal multiwavelet systems, interpolating
condition, approximation order, and regularity. In third section, we
prove that such systems should have even total length and there are
infinitely many L2-stable systems with minimal total length for approx-
imation orders 1, 2, and 3.

2. Preliminaries

In this section, we introduce basic notions on biorthogonal multi-
wavelet systems and interpolating properties. A vector function f ∈
L2 (R)2 is said to be L2-stable if there are constants 0 < A ≤ B < ∞
such that

A
∞∑

k=−∞

b∗kbk ≤

∥∥∥∥∥
∞∑

k=−∞

b∗kf (· − k)

∥∥∥∥∥
2

L2

≤ B

∞∑
k=−∞

b∗kbk
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holds for any vector sequence {bk}k∈Z ∈ `2 (Z)2 [11].

A vector function Φ = (φ1, φ2)
T is said to be a multiscaling function

of multiplicity 2 if Φ satisfies a matrix refinement equation

Φ (t) = 2
∑
`∈Z

P`Φ (2t− `)(2.1)

for some 2× 2 real matrices {P`}. The Fourier transform is defined by

Φ̂ :=
(
φ̂1, φ̂2

)T
, where φ̂j (ω) :=

∫∞
−∞ φj (t) e−iωtdt with i =

√
−1 for j =

1, 2. By taking Fourier transform, (2.1) leads to Φ̂ (ω) = P
(
ω
2

)
Φ̂
(
ω
2

)
.

Here, P (ω) :=
∑

k∈Z Pke
−iωk is called the two-scale matrix symbol or

the refinement mask corresponding to Φ.
Let Φ̃ be a multiscaling function such that for some 2×2 real matrices{

P̃`

}
Φ̃ (t) = 2

∑
`∈Z

P̃`Φ̃ (2t− `) .

A pair of multiscaling functions Φ and Φ̃ is said to be biorthogonal if〈
Φ (·) , Φ̃ (· − k)

〉
= δk,0I2,

where 〈f ,g〉 :=
∫∞
−∞ f (t) g∗ (t) dt and δk,` denotes the Kronecker δ-symbol.

Here and in what follows, I2 and 0 denote the 2× 2 identity and zero
matrices, respectively. Consider multiwavelets Ψ and Ψ̃ associated with
{Φ, Φ̃} given by

Ψ (t) = 2
∑
`∈Z

Q`Φ (2t− `) and Ψ̃ (t) = 2
∑
`∈Z

Q̃`Φ̃ (2t− `)

with 2×2 real matrices {Q`} and
{

Q̃`

}
. A pair of multiwavelets Ψ and

Ψ̃ is said to be biorthogonal if for all k ∈ Z〈
Ψ (·) , Ψ̃ (· − k)

〉
= δk,0I2 and〈

Φ (·) , Ψ̃ (· − k)
〉

=
〈
Φ̃ (·) ,Ψ (· − k)

〉
= 0.

For a given mask P (ω), the transition operator T : (L2
2π)2×2 −→

(L2
2π)2×2 acting on 2×2 matrix H (ω) with 2π-periodic square integrable

entries in [5] is defined by

TH (2ω) := P (ω) H (ω) P∗ (ω) + P (ω + π) H (ω + π) P∗ (ω + π) .
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Let HL be the space of 2 × 2 matrices of trigonometric polynomials
with degree at most L. A matrix is said to satisfy Condition E if it has
a simple eigenvalue 1 and the moduli of all other eigenvalues are less
than 1. The Kronecker product X ⊗ Y of X = (xjk)

2
j,k=1 ∈ C2×2 and

Y ∈ C2×2 [4] is defined by

X⊗Y =

(
x11Y x12Y
x21Y x22Y

)
.

Since we assume that Φ is compactly supported, we can write Φ (t) =

2
∑L2

`=L1
P`Φ (2t− `) for some integer L1 < L2. Let Bn be the 4 × 4

matrix given by Bn :=
∑L

`=0 P`−n ⊗ P` for L ≥ L2 − L1. Define the
4 (2L+ 1)× 4 (2L+ 1) matrix

T := (2B2j−k)
L
j,k=−L .(2.2)

Then T : HL −→ HL can be represented by T. Recall the following
criterion for the L2-stability.

Theorem 2.1. (Plonka and Strela, [11]) The refinable function vector
Φ is L2-stable if and only if its symbol P (0) satisfies Condition E, and
the corresponding transition operator T (or T) restricted to HL satisfies
Condition E, where the eigenmatrix corresponding to the eigenvalue 1
is positive definite for all ω ∈ R.

A vector function f (t) = [f1 (t) , f2 (t)]T is said to be interpolating if it
satisfies the condition

[
f (n) , f

(
n+ 1

2

)]
=
√

2δ(n)I2 for n ∈ Z. If all of

Φ, Φ̃, Ψ, and Ψ̃ in a biorthogonal multiwavelet system are interpolating,
then this system is said to be totally interpolating. Recall the following
lemma: Lemma 2.2 (Zhang et al. [17]).

Lemma 2.2. If Φ is an interpolating multiscaling function, then

P (ω) =

(
1
2

p1 (ω)
1
2
e−iω p2 (ω)

)
(2.3)

with pj (ω) :=
∑

k∈Z c
j,2
k e
−iωk for some cj,2k ∈ R and j = 1, 2.

A filter is said to be a finite impulse response(FIR) filter or have FIR
property if it has finite duration. The following theorem for FIR property
and the biorthogonality was shown in [2, 17]:

Theorem 2.3. Let {Φ, Φ̃} be a biorthogonal pair of interpolating

multiscaling functions with two-scale matrix symbols P (ω) and P̃ (ω)
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as in (2.3). If both p1 (ω) and p2 (ω) are FIR filters, then P̃ (ω) is an
FIR filter if and only if∑

k∈Z

c12k+1c
2
2`−2k −

∑
k∈Z

c12kc
2
2`−2k+1 =

C

2
δ2`+1,−m′(2.4)

for some real constant C 6= 0 and some odd integer m′.

Using biorthogonality and FIR property, one can find P̃ (ω), Q (ω),

and Q̃ (ω) from a given P (ω).

Theorem 2.4. Let
{

Φ, Φ̃,Ψ, Ψ̃
}

be a totally interpolating biorthog-

onal multiwavelet system with FIR property. The refinement mask P̃ (ω)
dual to P (ω) can be obtained by

p̃1 (ω) =
1

2C
eim

′ωp2 (−ω + π) and p̃2 (ω) = − 1

2C
eim

′ωp1 (−ω + π) .

The corresponding high-pass filters are

Q (ω) =

(
1
2

−p1 (ω)
1
2
e−iω −p2 (ω)

)
and Q̃ (ω) =

(
1
2

−p̃1 (ω)
1
2
e−iω −p̃2 (ω)

)
.

We say that a multiscaling function Φ provides approximation order
M ≥ 1 if there exist vectors ym` ∈ R2 such that

∑
`∈Z (ym` )T Φ(t− `) =

tm for all t ∈ R and m = 0, . . . ,M − 1. The following theorem of
approximation property based on biorthogonality and FIR property is
known in [2, 10,17].

Theorem 2.5. Let Φ(t) and Φ̃(t) be L2-stable interpolating biorthog-

onal multiscaling functions. Assume that P(ω) and P̃(ω) are both FIR

filters. Then both Φ(t) and Φ̃(t) provide approximation order M if and
only if ∑

k∈Z

knc12k =
(−1)n (1− 2C(2m′ + 1)n)

22n+2
,

∑
k∈Z

knc12k+1 =
(−1)n (3n + 2C(2m′ + 3)n)

22n+2
,

∑
k∈Z

knc22k =
1 + 2C(1− 2m′)n

22n+2
, and

∑
k∈Z

knc22k+1 =
(−1)n (1− 2C(2m′ + 1)n)

22n+2
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for some nonzero real constant C, some odd integerm′, and n = 0, . . . ,M−
1.

The length of a refinement mask P (ω) =
∑L2

`=L1
P`e

−iω` (or multiscal-

ing function Φ (t) = 2
∑L2

`=L1
P`Φ (2t− `) ) means the number L2−L1+1

with L1 ≤ L2 and PL1 6= 0,PL2 6= 0. Similarly, we say that a biorthogo-
nal multiwavelet system {Φ, Φ̃,Ψ, Ψ̃} has the total length TL2−TL1+1
if TL1 is the minimum value of their first indexes and TL2 is the maxi-
mum value of their last indexes of all refinement masks in this system.

3. Existence of L2-stable totally interpolating biorthogonal
multiwavelet systems with minimal total length

The primary concern of this section is how many L2-stable totally in-
terpolating biorthogonal multiwavelet systems with minimal total length
exist. We begin with a simple property on the total length of a totally
interpolating biorthogonal multiwavelet systems.

Lemma 3.1. The total length of a totally interpolating FIR biorthog-
onal multiwavelet system {Φ, Φ̃,Ψ, Ψ̃} is even.

Proof. Since Ψ and Ψ̃ have the same support as Φ and Φ̃, respec-
tively, we have only to consider the total length of {Φ, Φ̃}. By Lemma

2.2, we can write P (ω) =
∑L2

`=L1
P`e

−iω` with L1 ≤ 0 and L2 ≥ 1.

Since p̃1 (ω) = 1
2C
eim

′ωp2 (−ω + π) and p̃2 (ω) = − 1
2C
eim

′ωp1 (−ω + π)
by Theorem 2.4, we have

P̃ (ω) =

−L1−m′∑
`=−L2−m′

P̃`e
−iω`

for some odd integer m′ and 2× 2 real non-zero matrices P̃`. Therefore,
we have TL1 = min (L1,−L2 −m′) and TL2 = min (L2,−L1 −m′). The
total length is either 2L2 +m′ + 1 or −2L1 −m′ + 1, which finishes the
proof.
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There is a family of such systems of total length 2 with approximation
order 1 whose the associated filters are follows:

p1 (ω) =

(
1

4
− 1

2
C

)
+

(
1

4
+

1

2
C

)
e−iω and

p2 (ω) =

(
1

4
+

1

2
C

)
+

(
1

4
− 1

2
C

)
e−iω.

However, one can check that each system is discontinuous.

Theorem 3.2. There are infinitely many L2-stable totally interpo-
lating biorthogonal multiwavelet systems with the minimal total length
4 and the approximation order 1.

Proof. We can find a totally interpolating multiwavelet system with
the following filters: p1(ω) =

∑2
k=−1 c

1
ke
−iωk and p2(ω) =

∑2
k=−1 c

2
ke
−iωk,

where

c1−1 =
1

16

(
16C2 + 18C − 9

2C − 3

)
, c10 =

3

16
− 1

2
C,

c11 = − 1

16

(
3 + 34C

2C − 3

)
, c12 =

1

16
,

c2−1 = −1

8

(
8C2 + 18C + 9

2C − 3

)
, c20 =

3

8
+

1

2
C,

c21 =
1

8

(
3 + 34C

2C − 3

)
, c22 = −1

8

for some nonzero real constant C. When C = −1
2
, we have

p1(ω) =
7

32
eiω +

7

16
− 7

32
e−iω +

1

16
e−2iω,

p2(ω) =
1

16
eiω +

1

8
+

7

16
e−iω − 1

8
e−2iω,

p̃1(ω) =
1

8
eiω +

7

16
− 1

8
e−iω +

1

16
e−2iω, and

p̃2(ω) =
1

16
eiω +

7

32
+

7

16
e−iω − 7

32
e−2iω.

Let TΦ,C be the set of transition matrix as in (2.2) and EΦ,C be the set
of absolute values of eigenvalues of TΦ,C associated with Φ and some
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nonzero real constant C. The sets EΦ,− 1
2

and EΦ̃,− 1
2

are given by

EΦ,− 1
2
≈

{
1,

1

2
, 0.4206, 0.1866(2), 0.1601(2), 0.1253(2), 0.1169(2),

0.1026, 0.0881, 0.0646, 0.0489,
1

64
(2), 0.0110, 0(10)

}
,

EΦ̃,− 1
2
≈

{
1,

1

2
, 0.3312, 0.1497(2), 0.1234(2), 0.1209, 0.1084, 0.0830(2),

0.0657(2), 0.0517, 0.0413, 0.0273(2), 0.0055, 0(10)
}
,

where λ(n) means that the multiplicity of λ is n. One can easily ver-
ify Condition E. If we let HC(ω) be suitably chosen eigenmatrix of
TΦ,C corresponding to simple eigenvalue 1, then eigenmatrices H− 1

2
(ω)

of TΦ,− 1
2

and H̃− 1
2
(ω) of TΦ̃,− 1

2
can be chosen as in Table 1, where

[H(ω)]j,k :=
∑

`∈Z h
j,k
` e
−iω` with some hj,k` ∈ R for j, k = 1, 2. One can

check that the minima of [H− 1
2
(ω))]1,1, det(H− 1

2
(ω)), [H̃− 1

2
(ω)]1,1, and

det(H̃− 1
2
(ω)) are all positive. Furthermore, one can choose eigenmatri-

ces that depend smoothly on C, with the aid of CAS packages such as
Maple. Together with smooth dependence of eigenvalues on C, we can
conclude L2-stability of the system for C sufficiently close to −1

2
. Ma-

trix representations of TΦ,C |H0
L

and TΦ̃,C

∣∣
H0

L

that depend smoothly on

C can be obtained. Sobolev exponents of ΦC and Φ̃C corresponding to
C = −1

2
are 0.6248 and 0.7971, respectively. This implies the continuity

of ΦC and Φ̃C for C sufficiently close to −1
2
.

Graphs of the system {Φ− 1
2
, Φ̃− 1

2
,Ψ− 1

2
, Ψ̃− 1

2
} are Figures 1 and 2.

There are only two candidates of totally interpolating biorthogonal
multiwavelet systems of approximation order 2 with total length 4. Such
systems are obtained with m′ = −3 and C = −7

4
± 3

4

√
5 and they are

dual to each other. The filters are given by pj (ω) =
∑3

k=0 c
j
ke
−iωk for

j = 1, 2, where

c10 =
5

16
+

1

8
C, c11 =

7

16
+

1

8
C, c12 = − 1

16
− 5

8
C, c13 = − 3

16
+

3

8
C,

c20 =
3

16
− 3

8
C, c21 =

5

16
+

1

8
C, c22 =

1

16
+

7

8
C, and c23 = − 1

16
− 5

8
C.
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Table 1. H−1
2
(ω) and H̃− 1

2
(ω) for M = 1 and m′ = −1

in Theorem 3.2

` h1,1
` h1,2

` h2,1
` h2,2

`

−2 1799
1116 − 28

9
16
31 −1

−1 − 977179
2108

11277083
18972 − 24411797

531216
4003
62

0 275949344
33201 − 7520461

18972 − 7520461
18972

241054435
33201

1 − 977179
2108 − 24411797

531216
11277083
18972

4003
62

2 1799
1116

16
31 − 28

9 −1

` h̃1,1
` h̃1,2

` h̃2,1
` h̃2,2

`

−2 − 1028
2145

64
39 − 16

55 1
−1 27456747

204490 − 241894723
613470

3644534
306735 − 4261

110

0 899952974
306735

28889194
306735

28889194
306735

335059778
102245

1 27456747
204490

3644534
306735 − 241894723

613470 − 4261
110

2 − 1028
2145 − 16

55
64
39 1

(a) (b) (c)

(d)

Figure 1. φ1, φ2, φ̃1, and φ̃2 with M = 1 and C = −1
2

in Theorem 3.2

The associated filters p̃j, qj, and q̃j for j = 1, 2 are given by

p̃1 (ω) =
1

2C
e−3iωp2 (−ω + π) , p̃2 (ω) = − 1

2C
e−3iωp1 (−ω + π) ,

qj (ω) = −pj (ω) , and q̃j (ω) = −p̃j (ω) .
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(a) (b) (c)

(d)

Figure 2. ψ1, ψ2, ψ̃1, and ψ̃2 with M = 1 and C = −1
2

in Theorem 3.2

Although the transition matrix TΦ,C for C = −7
4

+ 3
4

√
5 satisfies condi-

tion E, that of Φ̃C has spectral radius approximately 36.74. Therefore,
the system is not L2-stable.

In view of Lemma 3.1, one can deduce that the total length of a totally
interpolating L2-stable biorthogonal multiwavelet system is at least 6.
On the other hand, various examples of L2-stable totally interpolating
biorthogonal multiwavelet systems of approximation order 2 with the
minimal total length 6 have been known in [2, 17] so far.

Theorem 3.3. There are infinitely many L2-stable totally interpo-
lating biorthogonal multiwavelet systems with the minimal total length
6 and the approximation order 2.

Proof. For j = 1, 2, one can find a one-parameter family of totally
interpolating biorthogonal multiwavelet systems based on filter compo-
nents

pj(ω) =
2∑

k=−2

cjke
−iωk and p̃j(ω) =

3∑
k=−1

c̃jke
−iωk,
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where

c1−2 = − α

32γ
, c1−1 =

(
3

16
+

1

8
C

)
, c10 =

(
α

16γ
+

5

16
− 3

8
C

)
,

c11 =

(
1

16
+

3

8
C

)
, c12 = −

(
α

32γ
+

1

16
+

1

8
C

)
,

c2−2 = − β

32γ
, c2−1 =

(
1

16
+

1

8
C

)
, c20 =

(
β

16γ
+

3

16
+

1

8
C

)
,

c21 =

(
3

16
− 5

8
C

)
, c22 = −

(
β

32γ
− 1

16
− 3

8
C

)
,

c̃1` =
1

2C
(−1)`−1c21−`, and c̃2` = − 1

2C
(−1)`−1c11−`

with α := 8C3 + 16C2 + 8C + 3, β := 8C3 + 8C2 + 4C + 1, and γ :=
4C2 + 4C − 1 for a nonzero real constant C and ` = −1, . . . , 3. When
C = −2

5
, we get

p1(ω) = 33
1120

e2iω + 11
80
eiω + 113

280
− 7

80
e−iω + 19

1120
e−2iω,

p2(ω) = 3
1120

e2iω + 1
80
eiω + 37

280
+ 7

16
e−iω − 19

224
e−2iω,

p̃1(ω) = 95
896
eiω + 35

64
− 37

224
e−iω + 1

64
e−2iω − 3

896
e−3ω,

p̃2(ω) = 19
896
eiω + 7

64
+ 113

224
e−iω − 11

64
e−2iω + 33

896
e−3ω.

The sets EΦ,− 2
5

and EΦ̃,− 2
5

of absolute values of eigenvalues of TΦ,− 2
5

and

TΦ̃,− 2
5
, respectively are given by

EΦ ≈
{

1,
1

2
,
1

4
, 0.13603,

1

8
, 0.07229, 0.07048, 0.06604, 0.05612, 0.03022,

0.02932, 0.01892, 0.01530, 0.01310, 0.01236, 0.01143, 0.00068,

0.00045(2), 0.00038, 0(16)
}
,

EΦ̃ ≈
{

1,
1

2
,
1

4
, 0.12799,

1

8
, 0.05918, 0.05333(2), 0.05076(2), 0.04213,

0.02347, 0.02251(2), 0.019266, 0.01844, 0.00938, 0.00314,

0.00156(2), 0(16)
}
,

from which one can easily verify Condition E. One can check that the
minima of [H− 2

5
(ω))]1,1, det(H− 2

5
(ω)), [H̃− 2

5
(ω)]1,1, and det(H̃− 2

5
(ω))

are all positive. Furthermore, one can choose eigenmatrices that depend
smoothly on C. Together with smooth dependence of eigenvalues on
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(a) (b) (c)

(d)

Figure 3. φ1, φ2, φ̃1, and φ̃2 with M = 2 and C = −2
5

in Theorem 3.3

C, we can conclude L2-stability of the system for C sufficiently close
to −2

5
. Matrix representations of TΦ,C |H0

L
and TΦ̃,C

∣∣
H0

L

that depend

smoothly on C can be obtained. Sobolev exponents of Φ− 2
5

and Φ̃− 2
5

are approximately are 0.93898 and 0.98294, respectively. This implies
the continuity of ΦC and Φ̃C for C sufficiently close to −2

5
.

Graphs of the system {Φ− 2
5
, Φ̃− 2

5
,Ψ− 2

5
, Ψ̃− 2

5
} are Figures 3 and 4.

Theorem 3.4. There are infinitely many L2-stable totally interpo-
lating biorthogonal multiwavelet systems with the minimal total length
8 and the approximation order 3.

Proof. A one-parameter family of totally interpolating biorthogonal
multiwavelet systems with approximation order 3 of total length 8 can
be constructed with m′ = −1. If we let κ be a root of Z2 + (384C3 −
264C2−156C)Z+16128C6 +28800C5−23616C4−37152C3 +3312C2 +
4968C−324 = 0 and µ := 4C2−8C+1, then the systems are determined
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(a) (b) (c)

(d)

Figure 4. ψ1, ψ2, ψ̃1, and ψ̃2 with M = 2 and C = −2
5

in Theorem 3.3

by the filter components pj(ω) =
∑4

k=−3 c
j
ke
−iωk for j = 1, 2, where

c1−3 =
κ

1024µ
,

c1−2 =
5

128
+

3

64
C − 24C3 − 76C2 − 64C − 7

512µ
,

c1−1 =
21

128
+

5

64
C − 3κ

1024µ
,

c10 =
15

64
− 15

32
C +

3 (24C3 − 76C2 − 64C − 7)

512µ
,

c11 =
7

64
+

15

32
C +

3κ

1024µ
,

c12 = − 3

128
− 5

64
C − 3 (24C3 − 76C2 − 64C − 7)

512µ
,

c13 = − 3

128
− 3

64
C − κ

1024µ
,

c14 =
(24C3 − 76C2 − 64C − 7)

512µ
,
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and

c2−3 =
56C3 + 128C2 + 38C − 3

512µ
,

c2−2 = − 3

128
− 3

64
C − 192C3 + 24C2 − 12C − 24 + κ

1024µ
,

c2−1 =
5

128
+

3

64
C − 3 (56C3 + 128C2 + 38C − 3)

512µ
,

c20 =
15

64
+

7

32
C +

3 (192C3 + 24C2 − 12C − 24 + κ)

1024µ
,

c21 =
15

64
− 15

32
C +

3 (56C3 + 128C2 + 38C − 3)

512µ
,

c22 =
5

128
+

21

64
C − 3 (192C3 + 24C2 − 12C − 24 + κ)

1024µ
,

c23 = − 3

128
− 5

64
C − 56C3 + 128C2 + 38C − 3

512µ
,

c24 =
192C3 + 24C2 − 12C − 24 + κ

1024µ
.

Recall that the filter components p̃1(ω) and p̃2(ω) are determined by
p̃1(ω) = 1

2C
e−iωp2(−ω + π) and p̃2(ω) = − 1

2C
e−iωp1(−ω + π).

We will analyze the filters corresponding to C = −3
4

and α = 45
4

. We
get

p1(ω) =
4∑

k=−3

c1ke
−iωk and p2(ω) =

4∑
k=−3

c2ke
−iωk,

where

c1−3 =
45

37888
, c1−2 =

243

37888
, c1−1 =

3861

37888
, c10 =

21915

37888
,

c11 = − 9041

37888
, c12 =

1617

37888
, c13 =

399

37888
, c14 = − 95

37888
,

c2−3 =
135

37888
, c2−2 =

729

37888
, c2−1 = − 257

37888
, c20 =

1809

37888
,

c21 =
22605

37888
, c22 = − 6989

37888
, c23 =

1197

37888
, and c24 = − 285

37888
.
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The sets EΦ,− 3
4

and EΦ̃,− 3
4

of absolute values of eigenvalues of TΦ,− 3
4

and

TΦ̃,− 3
4
, respectively are given by

EΦ,− 3
4
≈

{
1,

1

2
, 0.324059,

1

4
, 0.226937, 0.199128,

1

8
, 0.069142(2),

0.065385(2),
1

16
, 0.047648, 0.032906(2),

1

32
, 0.028756(2),

0.019578(2), 0.004469(2), 0.003704(2), 0.002739(2),

0.002077(2), 0.001718, 0.001697, 0.000260(2), 0.000257(2),

0.000075(2), 0(24)
}
,

EΦ̃,− 3
4
≈

{
1,

1

2
,
1

4
,
1

8
, 0.096571,

1

16
, 0.049996(2), 0.048366, 0.034076(2),

1

32
, 0.022093, 0.020055, 0.019107, 0.015869, 0.011817(2),

0.008387(2), 0.005798, 0.004106, 0.003879, 0.003698,

0.003698, 0.002911(2), 0.002187, 0.000430, 0.000423,

0.000312(2), 0.000293(2), 0.000043(2), 0(24)
}
,

which implies Condition E for TΦ,− 3
4

and TΦ̃,− 3
4
. One can check that

H− 3
4
(ω) and H̃− 3

4
(ω) are positive definite. Sobolev exponents of Φ− 3

4

and Φ̃− 3
4

are 1.2639 and 1.3791, respectively. As in the proofs of previous

theorems, one can verify the L2-stability.

Graphs of the system {Φ− 3
4
, Φ̃− 3

4
,Ψ− 3

4
, Ψ̃− 3

4
} are Figures 5 and 6.
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