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CONSTRUCTION OF THE FIRST LAYER OF

ANTI-CYCLOTOMIC EXTENSION

Jangheon Oh

Abstract. In this paper, using a theorem of Brink for prime de-
composition of the anti-cyclotomic extension, we explicitly construct
the first layer of the anti-cyclotomic Z3-extension of imaginary qua-
dratic fields.

1. Introduction

Let k be an imaginary quadratic field, and L an abelian extension
of k. L is called an anti-cyclotomic extension of k if it is Galois over
Q, and Gal(k/Q) acts on Gal(L/k) by −1. For each prime number p,
the compositum K of all Zp-extensions over k becomes a Zp2-extension,
and K is the compositum of the cyclotomic Zp-extension kc∞ and the
anti-cyclotomic Zp-extension ka∞ of k. The layers kcn of the cyclotomic
Zp-extension are well understood. Since the Hilbert class field of k is
an anti-cyclotomic extension of k, determination of the first layer of the
anti-cyclotomic Zp-extension becomes complicated as the p-rank of the
p-Hilbert class field of k becomes larger. In the paper [5], using Kummer
theory and class field theory, we constructed the first layer ka1 of the anti-
cyclotomic Zp-extension of an imaginary quadratic field whose p-part of
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the ideal class group is trivial. In the paper [7], we applied the same
method as in [5] to construct 3-Hilbert class fields of certain imaginary
quadratic fields k which also become the first layers ka1 of anti-cyclotomic
Z3-extension of k. The first layer of the anti-cyclotomic Z3-extension
constructed in [7] is easily determined because the class number of k is
3. However, in the paper [8], we need a method which tells the first
layer of the anti-cyclotomic Z3-extension from the rest of Hilbert class
field of k because the 3-rank of the ideal class group in the example
of [8] is 2. See Lemma 2 of this paper for the method we use in [8]. We
briefly explain our method to compute η satisfying ka1 = k(η). Note that
k(ζ3)k

a
1 = k(ζ3)(

3
√
β) for some β ∈ k(ζ3) by Kummer theory. By Lemma

1, we see that β is a combination of the fundamental unit and generators
of ideals of Q(

√
3d), where k = Q(

√
−d). Then, by Theorem 2, β can

be determined. Hence, by Kummer theory again, we can determine
η such that ka1 = k(η). In [8], we use Lemma 2 to determine β from
the candidates constructed from Lemma 1. In this paper, Theorem 2(a
theorem of Brink) plays the role of Lemma 2. This new method is
more efficient and clear. Brink also used Theorem 2 to construct the
first layer of the anti-cyclotomic Zp-extension of imaginary quadratic
fields. However, his approach is different from ours in that he uses all
possible polynomials satisfying discriminant conditions for candidates of
the defining polynomial of the first layer, but we use Kummer theory
for candidates of the first layer. To illustrate the method, we give an
example at the end of this paper.

2. Proof of theorems

Let p be an odd prime number. Throughout this section, we denote
by Hk, hk, Ak, and Mk the p-part of Hilbert class field, the p-class num-
ber, p-part of ideal class group, and the maximal abelian p-extension of
a number field k unramified outside above p, respectively. Let ζp be a
primitive p-th root of unity. We denote F = k(ζp). The first layer of
the anti-cyclotomic Zp-extension of an imaginary quadratic field k may
be or may not be contained in the p-Hilbert class field of k. The follow-
ing Theorem gives an answer for this question when p = 3. We define
rankZ/pA to be the dimension of A/Ap over Z/pZ for any abelian group
A.
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Theorem 1. (= [6, Theorem 2] ) Let d 6≡ 3 mod 9 be a square-
free positive integer, k = Q(

√
−d) an imaginary quadratic field and

ka∞ the anti-cyclotomic Z3-extension over k. Assume that AQ(
√
−d) is

3-elementary. Then

Hk ∩ ka∞ = k ⇐⇒
rankZ/3AQ(

√
3d) = rankZ/3AQ(

√
−d).

Remark 1. It is well-known that

rankZ/3AQ(
√
3d) ≤ rankZ/3AQ(

√
−d) ≤ rankZ/3AQ(

√
3d) + 1.

In the above theorem, we can replace 3 by any odd prime p if we sub-
stitute the χω-component AF,χω of AF for AQ(

√
3d), where χ is the non-

trivial character corresponding to the field Q(
√
−d) and ω is the Teich-

muller character for the prime p, without the condition that d 6≡ 3 mod
9. However, Theorem 1 may not be true if AQ(

√
−d) is not 3-elementary.

For example, if hk = 9, rankZ/3Ak = 1, and Hk∩ka∞ = ka1 , then Theorem
1 may not be true.

We need the following theorem to determine the first layer of the
anti-cyclotomic Z3-extension from candidates constructed from Lemma
1 below.

Theorem 2. (= [1, Theorem 2])
Assume that q is different from p and splits in k. We may then write

qhk =

{
a2 + db2 if d 6≡ 3 mod 4,
a2 + ab+ d+1

4
b2 if d ≡ 3 mod 4

with relatively prime a, b ∈ Z. Put ω :=
√
−d if d 6≡ 3 mod 4, otherwise

ω := 1+
√
−d

2
. Let n ≥ 0 be an integer and q a prime ideal of k above q.

(a) Suppose p splits in k. Write (a + bω)p−1 = a∗ + b∗ω. Then q splits
completely in kan iff b∗ ≡ 0 mod pn+1+µ−ν .
(b) Suppose p is inert in k. Write (a + bω)p+1 = a∗ + b∗ω. Then the
conclusion of (a) holds.
(c) Suppose p is ramified in k and we are not in the exceptional case(see
below). Then q splits completely in kan iff b∗ ≡ 0 mod pn+µ−ν .
(d) Suppose p = 3 and d ≡ 3 mod 9(the exceptional case). Write
(a + bω)3 = a∗ + b∗ω. Then q splits completely in kan iff b∗ ≡ 0 mod
3n+2+µ−ν .
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In all cases, q only splits in a finite number of steps of ka. Here µ is the
power of p of hk and ν is the non-negative integer such that ka∞∩Hk = kaν .

Next we describe the k(ζ3)k
a
1 by Kummer Theory. The following

Lemma is proved in [8]. We include the proof.

Lemma 1. (= [8, Lemma 2.3]) Let k = Q(
√
−d) be an imaginary

quadratic field, and χ be the nontrivial character of Gal(k/Q). Denote
F = k(ζ3). Then the compositum Fka1 of F and ka1 is contained in

F ( 3
√
ε, 3
√
α1, · · · , 3

√
αt), where ε is the fundamental unit of Q(

√
3d) and

αi satisfying p3 = (αi) for ideals p of Q(
√

3d).

Proof. Let XF := Gal(MF/F )/3Gal(MF/F ) and XF,χ be the χ-
component of XF for the nontrivial character χ of Gal(k/Q). Let S be
a subset of F×/(F×)3 corresponding to XF . Then, by Kummer theory,
we have a perfect pairing Sχω ×XF,χ −→ µ3, where ω is the nontrivial
character of Gal(Q(

√
−3)/Q) and Sχω is the χω-component of S. Note

that S ' EF/EF
3 × AF/AF 3× < 3 > / < 3 >3, where EF is the group

of units of F and AF is the 3-part of the ideal class group of F (See [4]
for example). Therefore Lemma 1 follows since the χω-component EF,χω
of the group of units EF is the group of the units of the real quadratic
subfield F+(= Q(

√
3d)) of F, and the χω-component AF,χω of AF is the

ideal class group of the real quadratic field Q(
√

3d).

The following statement is used in [3] to give an example with the
Iwasawa invariants µ = λ = 0 without proof. See [8] for the proof. We
use Theorem 2 of this paper instead of the following Lemma used in [8]
to tell ka1 from the rest of Hilbert class field of k.

Lemma 2. Let p be an odd prime, k = Q(
√
−d) an imaginary qua-

dratic field such that AQ(
√
−d) is p-elementary, p is unramified in k/Q,

and ζ3 6∈ k. Assume that ka∞∩Hk = ka1 . Then the image of Gal(Xk,χ/k
a
∞)

in Gal(Hk/k) corresponds to a subgroup Bk of the ideal class group Ak
of k consisting of classes c with the following property: If a ∈ c, then
ap = (α), where α is an L-adic p-th power for every prime L of k lying
above p.

Now, from Theorem 2 and Lemma 1, we can construct the first layer
of the anti-cyclotomic Z3-extension of imaginary quadratic fields.

Theorem 3. (See [8, Theorem 2.5.]) Let k = Q(
√
−d) be an imagi-

nary quadratic field such that ζ3 6∈ k. Then one can explicitly construct
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the unique extension M3 of F in MF,χ such that M3 = F ( 3
√
β), and

ka1 = k(η), where β ∈ Sχω and η = TrM3/ka1
( 3
√
β).

Proof. Since the rank of XF,χ is the same as that of Ak by Theorem 1
and Lemma 1, the extension field N3 of degree 3 of F in MF,χ is always
equal to the compositum FL of F and an extension L of degree 3 of
k in Hk. Moreover L is uniquely determined when N3 is given because
Gal(FL/k) is a cyclic group of order 6. Let M3 be the extension of F
satisfying properties in Theorem 3, and M3 = FL. Choose the set P of
primes of Q, which split completely in F. Then the primes of k above P
and satisfying the condition of Theorem 2 split completely in L/k, when
L = ka1 . This completes the proof since a Galois extension of a number
field is determined by the set of primes which split completely in the
Galois extension.

The following example is given in [8] using Lemma 2. Here we con-
struct the same example using Theorem 2.

Example 1. Let k = Q(
√
−4027) be an imaginary quadratic field

and p2 a prime ideal of Q(
√

12081) above 2. Then

ka1 = k(
3
√
ε2α− 2

3
√
ε−2α−1),

where ε is the fundamental unit of Q(
√

12081) and p32 = (α). Note that
hQ(
√
12081) = 3, hk = 9, and rankZ/3Ak = 2. We can take α = 81((−1 +√

12081)/2) + 4492 and ε = (17288113122 + 157288204
√

12081)2/12. By
Lemma 1 and Theorem 3, β is one of the following; ε, εα, ε2α, α. Choose
q = 19. Since hk = 9, µ = 2. We see that two relatively prime integers
a = 208373, b = 16550 satisfy the equation a2 + ab + d+1

4
b2 = 199.

Since p = 3 is inert in k, we use (b) of Theorem 2. When we write
(a+ bω)4 = a∗ + b∗ω, we see that

b∗ = −3281686861138712769600

and b∗ ≡ 0 mod 27 = 31+1+2−1. Therefore, by (b) of Theorem 2, the
prime q of k above q splits completely in ka1 . We can compute, by Maple,

irr(
3
√
ε2α,Q) mod 19

= (x+ 2)(x+ 3)(x+ 8)(x+ 12)(x+ 14)(x+ 18).

However, we have irr( 3
√
εα,Q) mod 19 = (x3+9)(x3+16), irr( 3

√
ε,Q) mod 19 =

(x3 + 9)(x3 + 17), and irr( 3
√
α,Q) mod 19 = (x3 + 13)(x3 + 14). Hence

ka1(ζ3) = k(ζ3)(
3
√
ε2α). Moreover, since σ ∈ Gal(M3/k

a
1) satisfies σ2 = 1,
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we have
3
√
ε2α

σ
= −2

3
√
ε−2α−1 and therefore η = TrM3/ka1

( 3
√
β) =

3
√
ε2α−

2
3
√
ε−2α−1. Note that b∗ 6≡ 0 mod 34, which implies that the primes of

k above 19 split completely in the first layer of the anti-cyclotomic Z3-
extension of k, but the primes of ka1 above 19 stay prime along the layers
of the extension by (b) of Theorem 2.
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