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ANALYTIC CONTINUATION OF GENERALIZED

NON-HOLOMORPHIC EISENSTEIN SERIES

Sung-Geun Lim

Abstract. B. C. Berndt computed the Fourier series of a class of
generalized Eisenstein series, which gives an analytic continuation to
the generalized Eisenstein series. In this paper, continuing his work,
we consider generalized non-holomorphic Eisenstein series and give
an analytic continuation to the s-plane.

1. Introduction

B. C. Berndt [3] proved transformation formulae for a more general
class of Eisenstein series which is defined by

G(z, s; r1, r2, h1, h2) :=

∞∑′

m,n=−∞

e2πi(mh1+nh2)

((m+ r1)τ + n+ r2)
s ,

where the dash ′ means (m,n) 6= (−r1,−r2), Im z > 0, r1, r2, h1, h2
are real and Re s > 2. He [4] has converted those formulae into trans-
formation formulae for a large class of series including the Dedekind
eta function, which give G(z, s; r1, r2, h1, h2) an analytic continuation to
all values of s ∈ C. Using these transformation formulae, he has es-
tablished a lot of infinite series identities which include many infinite
series identities by Ramanujan or by other authors. In addition, these
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transformation formulae have been applied to obtain transformation for-
mulae for theta functions and reciprocities of modified Dedekind sums.
Recently, the author could derive new proofs of three modular trans-
formations which had been given by J. Lehner, K. Mahlburg, Y. Yang,
respectively [7].
In this paper, we consider a class of generalized non-holomorphic Eisen-
stein series. Using generalized Lipschitz summation formula [9] and
applying Berndt’s method [2], we convert generalized non-holomorphic
Eisenstein series into certain series with confluent hypergeometric func-
tions of the second kind [6,11], which give an analytic continuation under
some condition to the entire s-plane. It is worthy of notice that the con-
fluent hypergeometric functions of the first and the second kind are used
to obtain analytic continuation of each case and properties of the hyper-
geometric function 2F1(a, b; c; z) are essential to obtain transformation
formulae which are defined for all values of s in C [6, 10,11].

2. Notations

For a complex w, we choose the branch of the argument defined by
−π ≤ arg w < π. Let λ denote the characteristic function of the integers
and let e(w) = e2πiw. For every complex τ , V τ = V (τ) = aτ+b

cτ+d
always

denotes a modular transformation with c > 0. Let r = (r1, r2) and
h = (h1, h2) denote real vectors, and define the associated vectors R and
H by

R = (R1, R2) = (ar1 + cr2, br1 + dr2)

and
H = (H1, H2) = (dh1 − bh2,−ch1 + ah2).

For a real number x, [x] denotes the greatest integer less than or equal
to x and {x} := x− [x]. For real x, α and Re s > 1, let

ψ(x, α, s) :=
∑
n+α>0

e(nx)

(n+ α)s
.

We see that ψ(x, α, s) can be analytically continued to the entire s-
plane [1]. The confluent hypergeometric function of the second kind
U(α, β, z) is defined to be

U(α, β, z) :=
Γ(1− β)

Γ(1 + α− β)
1F1(α; β; z)
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+
Γ(β − 1)

Γ(α)
z1−β 1F1(1 + α− β; 2− β; z),

where

1F1(α; β; z) :=
∞∑
n=0

(α)n
(β)nn!

zn

and (x)n denotes the rising factorial defined by

(x)n := x(x+ 1) · · · (x+ n− 1) for n > 0, (x)0 := 1.

By the functional equation of gamma functions, we see

U(α, β, z)

=
π

sinπβ

(
1F1(α;β; z)

Γ(β)Γ(1 + α− β)
− z1−β 1F1(1 + α− β; 2− β; z)

Γ(2− β)Γ(α)

)
.

Then U(α, β, z) can be analytically continued to all values of α, β and
z real or complex, even when β is zero or a negative integer [10], where
z is in the plane cut along [−∞, 0]. We also have an integral expression
for U(α, β, z), which is [10], for Re α > 0, Re z > 0,

U(α, β, z) =
1

Γ(α)

∫ ∞
0

tα−1(1 + t)β−α−1e−zt dt.(2.1)

Thus the right hand side of (2.1) can be analytically continued to all
α, β and z, where |arg z| < π. The function U(α, β, z) has asymptotic
series [6]

U(α, β, z) = z−α
(

1 +O

(
1

z

))
, |z| → ∞,(2.2)

where |arg z| < π.

3. Generalized non-holomorphic Eisenstein series

Let H = {τ ∈ C | Im(τ) > 0}, the upper half-plane.

Definition 3.1. Let τ ∈ H and s, s1 ∈ C. For Re s > 2, the gener-
alized non-holomorphic Eisenstein series G(τ, τ̄ , s, s1; r, h) is defined to
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be

G(τ, τ̄ , s, s1; r, h) :=
∞∑′

m,n=−∞

e(mh1 + nh2)

((m+ r1)τ + n+ r2)
s1 ((m+ r1)τ̄ + n+ r2)

s−s1 ,

where the dash ′ means (m,n) 6= (−r1,−r2).

For τ ∈ H and arbitrary s1, s ∈ C, define

A(τ, s, s1; r, h) :=
∑

m+r1>0

∑
n−h2>0

e (mh1 + ((m+ r1)τ + r2)(n− h2))
(n− h2)1−s

· U(s− s1; s; 4π(m+ r1)(n− h2)Im(τ))

and

Ā(τ, s, s1; r, h) :=
∑

m+r1>0

∑
n+h2>0

e (mh1 − ((m+ r1)τ̄ + r2)(n+ h2))

(n+ h2)1−s

· U(s1; s; 4π(m+ r1)(n+ h2)Im(τ)).

By (2.2), two functionsA(τ, s, s1; r, h) and Ā(τ, s, s1; r, h) are well-defined
for all s1, s ∈ C. Let

H(τ, s, s1; r, h) := A(τ, s, s1; r, h) + e
(s

2

)
A(τ, s, s1;−r,−h)

and

H̄(τ, s, s1; r, h) := Ā(τ, s, s1; r, h) + e
(s

2

)
Ā(τ, s, s1;−r,−h).

Let

H(τ, τ̄ , s, s1; r, h) :=

1

Γ(s1)
H(τ, s, s1; r, h) +

1

Γ(s− s1)
H̄(τ, s, s1; r, h).

Then the function H(τ, τ̄ , s, s1; r, h) is well-defined for all s1, s ∈ C. We
find a relation between G(τ, τ̄ , s, s1; r, h) and H(τ, τ̄ , s, s1; r, h).

Theorem 3.2. If τ ∈ H and Re s > 2, then

G(τ, τ̄ , s, s1; r, h) = λ(r1)e(−r1h1)Ψ(h2, r2, s)

+λ(h2)
(2π)s(−i)−s+2s1

(4πIm τ)s−1
Γ(s− 1)

Γ(s1)Γ(s− s1)
Ψ−1(h1, r1, s)

+(2π)s(−i)−s+2s1H(τ, τ̄ , s, s1; r, h),
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where

Ψ(α, β, s) := ψ(α, β, s) + e
(s

2

)
ψ(−α,−β, s),

Ψ−1(α, β, s) := ψ(α, β, s− 1) + e
(s

2

)
ψ(−α,−β, s− 1).

Proof. For τ ∈ H and Re s > 2,

G(τ, τ̄ , s, s1; r, h) = λ(r1)e(−r1h1)
∞∑′

n=−∞

e(nh2)

(n+ r2)s

+(
∑

m<−r1

∞∑
n=−∞

+
∑

m>−r1

∞∑
n=−∞

)
e(mh1 + nh2)

((m+ r1)τ + n+ r2)s1

· 1

((m+ r1)τ̄ + n+ r2)s−s1

=: T1 + T2 + T3, say.(3.1)

Firstly,

T1 = λ(r1)e(−r1h1)

( ∑
n>−r2

e(nh2)

(n+ r2)s
+
∑
n<−r2

e(nh2)

(n+ r2)s

)
= λ(r1)e(−r1h1)

(
ψ(h2, r2, s) + e

(s
2

)
ψ(−h2,−r2, s)

)
.(3.2)

We shall use a generalization of the Lipschitz summation formula [9],
that is, if α ∈ R, Re s > 1 and τ = x+ iy ∈ H, then

∞∑
m=−∞

e(−αm)

(τ +m)s1(τ̄ +m)s−s1

= λ(α)
(2π)s(−i)−s+2s1Γ(s− 1)(4πy)1−s

Γ(s1)Γ(s− s1)

+
(2π)s(−i)−s+2s1

Γ(s1)

∑
n>−α

e((n+ α)τ)

(n+ α)1−s
U(s− s1, s, 4π(n+ α)y)

+
(2π)s(−i)−s+2s1

Γ(s− s1)
∑
n>α

e(−(n− α)τ̄)

(n− α)1−s
U(s1, s, 4π(n− α)y).(3.3)

Secondly, replacing m by −m and then using (3.3) with τ replaced by
(m− r1)τ − r2 and α by h2,

T2 = e
(s

2

) ∑
m>r1

e(−mh1)
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∞∑
n=−∞

e(−nh2)
((m− r1)τ + n− r2)s1((m− r1)τ̄ + n− r2)s−s1

= λ(h2)
e
(
s
2

)
(2π)s(−i)−s+2s1

(4πy)s−1
Γ(s− 1)

Γ(s1)Γ(s− s1)
ψ(−h1,−r1, s− 1)

+
(2π)s(−i)−s+2s1e

(
s
2

)
Γ(s1)

A(τ, s, s1;−r,−h)

+
(2π)s(−i)−s+2s1e

(
s
2

)
Γ(s− s1)

Ā(τ, s, s1;−r,−h).(3.4)

By the similar manner, applying (3.3) with τ replaced by (m+r1)τ +r2
and α by h2, we find

T3 = λ(h2)
(2π)s(−i)−s+2s1

(4πy)s−1
Γ(s− 1)

Γ(s1)Γ(s− s1)
ψ(h1, r1, s− 1)

+
(2π)s(−i)−s+2s1

Γ(s1)
A(τ, s, s1; r, h)

+
(2π)s(−i)−s+2s1

Γ(s− s1)
Ā(τ, s, s1; r, h).(3.5)

Plugging (3.2), (3.4) and (3.5) into (3.1), we complete the proof.

Remark 3.3. We see that Ψ(α, β, s) and Ψ−1(α, β, s) can be analyt-
ically continued to the entire s-plane, and H(τ, τ̄ , s, s1; r, h) is an entire
function of s. Hence G(τ, τ̄ , s, s1; r, h) can be analytically continued to
the entire s-plane if h2 is not integral or s1 is integral. If h2 is inte-
gral and s1 is not integral, then G can be meromorphically continued to
entire s-plane, namely, it has simple poles at integers s ≤ 1.

Recently, M. Katsurada and T. Noda [5] found an meromorphic con-
tinuation of non-holomorphic Eisenstein series Ek(s; z) over the whole
s-plane for even integer k, where

Ek(s; z) :=
1

2

∞∑
m,n=−∞
(m,n)=1

(mz + n)−k|mz + n|−2s, (Re s > 1− k/2).

Since

2ζ(k + 2s)Ek(s; z) = G(z, z̄, k + 2s, k + s; 0, 0),

this can be regarded as a special case of Theorem 3.2.
Finally, we derive modular transformation formulae for H(τ, τ̄ , s, s1; r, h).
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Theorem 3.4. Let Q = {τ ∈ H | Re τ > −d/c} and let s1 ∈ C.
Then for τ ∈ Q and s ∈ C, not integers ≤ 1,

(cτ + d)−s1(cτ̄ + d)−s+s1H(V τ, V τ̄ , s, s1; r, h) = H(τ, τ̄ , s, s1;R,H)

+λ(R1)e(−R1H1)(2πi)
−se
(
−s2

2

)
Ψ(−H2,−R2, s)

−λ(r1)e(−r1h1)(2πi)−se
(s1

2

)
(cτ + d)−s1(cτ̄ + d)−s+s1

Ψ(h2, r2, s)

+λ(H2)(4πIm(τ))1−s
Γ(s− 1)

Γ(s1)Γ(s− s1)
Ψ−1(H1, R1, s)

−λ(h2)(4πIm(τ))1−s
Γ(s− 1)

Γ(s1)Γ(s− s1)
(cτ + d)s−s1−1(cτ̄ + d)s1−1

Ψ−1(h1, r1, s)

+
(2πi)−se

(
− s2

2

)
Γ(s1)Γ(s− s1)

L(τ, τ̄ , s, s1;R,H).

Proof. Employ modular transformation formulae for G(τ, τ̄ , s, s1; r, h)
in [8] and apply Theorem 3.2.
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