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ON THE ASYMPTOTIC EXACTNESS OF AN ERROR

ESTIMATOR FOR THE LOWEST-ORDER

RAVIART–THOMAS MIXED FINITE ELEMENT

Kwang-Yeon Kim

Abstract. In this paper we analyze an error estimator for the
lowest-order triangular Raviart–Thomas mixed finite element which
is based on solution of local problems for the error. This estimator
was proposed in [Alonso, Error estimators for a mixed method, Nu-
mer. Math. 74 (1996), 385–395] and has a similar concept to that
of Bank and Weiser. We show that it is asymptotically exact for the
Poisson equation if the underlying triangulations are uniform and
the exact solution is regular enough.

1. Introduction

In this work we consider the Poisson equation

(1.1)

{−∆u = f in Ω

u = 0 on ∂Ω

on a bounded polygonal domain Ω ⊂ R2 with the boundary ∂Ω. By
introducing the vector variable σ = −∇u, the Poisson equation may be
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rewritten as the system of first-order PDEs

σ +∇u = 0 and divσ − f = 0 in Ω.

The mixed variational formulation then seeks (σ, u) ∈ H(div,Ω)×L2(Ω)
such that

(σ, τ )Ω − (div τ , u)Ω = 0 ∀τ ∈ H(div,Ω),

(divσ, w)Ω − (f, w)Ω = 0 ∀w ∈ L2(Ω),

where (·, ·)S is the standard L2 inner product over a domain S ⊂ R2 and

H(div,Ω) = {τ ∈ (L2(Ω))2 : div τ ∈ L2(Ω)}.
Several a posteriori error estimators have been developed and ana-

lyzed for the mixed finite element methods based on the above formula-
tion; see, for example, [2,4,7,16] for some early works and [1,10–12,15] for
more recent ones. The performance of an error estimator is commonly
measured by the effectivity index which is the ratio of the estimated
error to the actual error. In particular, we say that the error estimator
is asymptotically exact if the effectivity index approaches unity as the
mesh size goes to zero. For the P1 conforming finite element method,
the asymptotic exactness was established for the error estimator based
on gradient recovery in [17, 18] and for the error estimator of Bank and
Weiser in [9, 13]. It should be noted that the proof of the asymptotic
exactness usually depends on super-closeness between the finite element
solution and the Lagrange interpolant of the exact solution which has
been shown to be valid only if the underlying triangulations are uniform
(or small perturbations of uniform ones) and the exact solution is regular
enough.

In this paper we consider one of the error estimators proposed by
Alonso [2] for the lowest-order triangular Raviart–Thomas mixed finite
element which is based on solution of local problems similar to those of
Bank and Weiser [3]. This estimator yields an estimate of the vector
error in the L2 norm and was shown to be equivalent to the actual error
under a saturation assumption. By adapting the proof of [9] and using
the superconvergence result of [5], we show that it is asymptotically
exact under the usual assumption that the underlying triangulations are
uniform and the exact solution is regular enough.

The rest of the paper is organized as follows. In Section 2 we state
some preliminary results and define the mixed finite element method
and the error estimator proposed by Alonso. Then we establish the
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asymptotic exactness of this error estimator in Section 3. Finally, in
Section 4, some numerical results are presented to confirm the theoretical
result.

2. Mixed Finite Element Method and Error Estimator

We introduce some notation and preliminary results before defining
the mixed finite element method and the error estimator for it.

Assume that a family of shape-regular triangulations {Th}h>0 of Ω
made of triangles is given with the mesh size h = maxT∈Th hT , where hT
is the diameter of T . For an element T ∈ Th, we denote the set of three
edges of T by ET , the unit outward normal vector to ∂T by nT , and the
union of all elements of Th sharing at least one edge with T by

T ∗ =
⋃
{T ′ : T and T ′ share an edge}.

For a vector function τ = (τ1, τ2) and a scalar function v defined over
T , the following integration-by-parts formula holds

(rot τ , v)T − (τ , curl v)T = 〈τ · tT , v〉∂T ,
where

rot τ =
∂τ2

∂x1

− ∂τ1

∂x2

, curl v =

(
∂v

∂x2

,− ∂v

∂x1

)
and tT = (−n2, n1) when nT = (n1, n2). The tangential jump of a vector
function τ across an interior edge e = ∂T ∩ ∂T ′ is defined as

[[τ · t]]|e = τ |T · tT + τ |T ′ · tT ′ .
We simply set [[τ · t]]|e = 2(τ · tT )|e for e ⊂ ∂T ∩ ∂Ω.

Let Pk(T ) be the space of all polynomials on T of total degree at most
k and let

P0
2(T ) = {ϕ ∈ P2(T ) : ϕ vanishes at all vertices of T}.

For T ∈ Th and e ∈ ET , the following estimates are easily derived by the
scaling argument

‖v‖0,e . h
−1/2
T ‖v‖0,T ∀v ∈ P1(T ),(2.1)

‖ϕ‖0,T + h
1/2
T ‖ϕ‖0,e . hT‖ curlϕ‖0,T ∀ϕ ∈ P0

2(T ).(2.2)

Here and throughout the paper, we will frequently use the notation a . b
for positive quantities a and b to indicate that the inequality a ≤ Cb
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holds with constant C > 0 independent of the mesh size h. In addition,
the notation ‖·‖k,S will be used for the norm of the Sobolev space Hk(S).

Now the lowest-order triangular Raviart–Thomas mixed finite element
method for the problem (1.1) is defined as follows: find (σh, uh) ∈ V h×
Wh such that

(σh, τ h)Ω − (div τ h, uh)Ω = 0 ∀τ ∈ V h,(2.3)

(divσh, wh)Ω − (f, wh)Ω = 0 ∀wh ∈ Wh,(2.4)

where

V h = {τ ∈ H(div,Ω) : τ |T ∈ (P0(T ))2 + xP0(T ) ∀T ∈ Th},
Wh = {w ∈ L2(Ω) : w|T ∈ P0(T ) ∀T ∈ Th}.

The following optimal a priori error estimates are well established (cf.
[6, 14])

‖σ − σh‖0,Ω ≤ Ch‖σ‖1,Ω, ‖u− uh‖0,Ω ≤ Ch(‖σ‖1,Ω + ‖u‖1).

Finally, we present the error estimator proposed by Alonso [2] for the
mixed finite element method (2.3)–(2.4). Using the integration by parts
and the equality rotσh = 0, one can easily derive the following error
equation for the test function τ = curlϕ ∈ H(div,Ω)

(σ − σh, τ )Ω = −(σh, curlϕ)Ω =
∑
e∈Eh

∫
e

[[σh · t]]ϕds

=
∑
T∈Th

1

2

∫
∂T

[[σh · t]]ϕds.

Based on the idea of Bank and Weiser [3], this leads us to consider the
following local problem.

Definition 2.1. For every T ∈ Th, define ψT ∈ P0
2(T ) to be the

solution of

(2.5) (curlψT , curlϕ)T =
1

2

∫
∂T

[[σh · t]]ϕds ∀ϕ ∈ P0
2(T )

and set

(2.6) η =

( ∑
T∈Th

‖ curlψT‖2
0,T

)1/2

.
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Note that (2.5) gives rise to a 3 × 3 matrix system, since P0
2(T ) is

spanned by three quadratic edge bubble functions on T . By comparing
the estimator η with the standard edge residual, we obtain the following
local lower bound for η.

Lemma 2.2. For every T ∈ Th, we have

(2.7) ‖ curlψT‖0,T . ‖σ − σh‖0,T ∗ .

Proof. Taking ϕ = ψT in (2.5) and applying (2.2), we obtain

‖ curlψT‖0,T . h
1/2
T ‖[[σh · t]]‖0,∂T .

Now the desired result follows from the local lower bound for the stan-
dard edge residual [7].

3. Asymptotic Exactness of Error Estimator

In this section we establish the asymptotic exactness of the error
estimator η defined in the previous section. Now, throughout the paper,
the triangulation Th is assumed to be uniform in the sense that every pair
of adjacent triangles of Th forms a parallelogram. Under this condition,
the following superconvergence result was shown in [5, 8]

(3.1) ‖Πhσ − σh‖0,Ω . h
3
2‖σ‖2,Ω,

where Πh : (H1(Ω))2 → V h denotes the Raviart–Thomas projection
defined by ∫

e

Πhτ · nT ds =

∫
e

τ · nT ds ∀e ∈ ET , T ∈ Th

for τ ∈ (H1(Ω))2. By adapting the proof of [9] and using this result, we
are able to derive the following super-closeness result.

Theorem 3.1. Suppose that the triangulation Th is uniform. Then
we have ( ∑

T∈Th

‖(σ − σh)− curlψT‖2
0,T

)1/2

. h
3
2‖σ‖2,Ω.
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Proof. Let T ∂
h ⊂ Th be the set of all triangles with at least one edge on

∂Ω and let Ω∂
h =

⋃
T∈T ∂

h
T ∗. Using the local lower bound (2.7) and the

well-known estimate ‖σ − Πhσ‖0,T . hT‖σ‖1,T for T ∈ Th, we obtain∑
T∈T ∂

h

‖(σ − σh)− curlψT‖2
0,T . ‖σ − σh‖2

0,Ω∂
h

. ‖σ − Πhσ‖2
0,Ω∂

h
+ ‖Πhσ − σh‖2

0,Ω∂
h

. h2‖σ‖2
1,Ω∂

h
+ ‖Πhσ − σh‖2

0,Ω∂
h
,

which yields by Lemma 2.2 of [5]

(3.2)
∑
T∈T ∂

h

‖(σ − σh)− curlψT‖2
0,T . h3‖σ‖2

2,Ω + ‖Πhσ − σh‖2
0,Ω.

Motivated by [9], we define wτ |T ∈ P0
2(T ) on each element T ∈ Th \ T ∂

h

(which means that T has three neighbors) to be the solution of
(3.3)

(curlwτ , curlϕ)T = (rot τ , ϕ)T +
1

2

∫
∂T

[[Πhτ · t]]ϕds ∀ϕ ∈ P0
2(T )

for a given τ ∈ (H1(Ω))2. By the triangle inequality we have∑
T∈Th\T ∂

h

‖(σ − σh)− curlψT‖2
0,T

.
∑

T∈Th\T ∂
h

(
‖(σ − Πhσ)− curlwσ‖2

0,T + ‖ curl(wσ − ψT )‖2
0,T

)
+‖Πhσ − σh‖2

0,Ω.

The first term is handled by Lemma 3.3 given below, which results in∑
T∈Th\T ∂

h

‖(σ − Πhσ)− curlwσ‖2
0,T . h4‖σ‖2

2,Ω.

To bound the second term, we note that rotσ = 0 in (3.3) and then use
the estimates (2.1)–(2.2) to obtain for ϕ ∈ P0

2(T )

(curl(wσ − ψT ), curlϕ)T =
1

2

∫
∂T

[[(Πhσ − σh) · t]]ϕds

≤ 1

2
‖[[(Πhσ − σh) · t]]‖0,∂T‖ϕ‖0,∂T

. ‖Πhσ − σh‖0,T ∗‖ curlϕ‖0,T .
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Taking ϕ = wσ − ψT and summing over all T ∈ Th \ T ∂
h gives∑

T∈Th\T ∂
h

‖ curl(wσ − ψT )‖2
0,T . ‖Πhσ − σh‖2

0,Ω.

Therefore it follows that

(3.4)
∑

T∈Th\T ∂
h

‖(σ − σh)− curlψT‖2
0,T . h4‖σ‖2

2,Ω + ‖Πhσ − σh‖2
0,Ω.

The desired result is derived by combining (3.2) and (3.4) with the su-
perconvergence result (3.1).

To complete the proof of Theorem 3.1, we prove the following two
lemmas.

Lemma 3.2. Suppose that T ∪ T ′ is a parallelogram with the center
m. If τ ∈ (P1(T ∪ T ′))2, then

τ (m) =
1

2
(Πhτ |T (m) + Πhτ |T ′(m)).

Proof. Following the argument of [5], we may take m as the origin
and assume that τ (m) = 0, since τ = Πhτ over T ∪ T ′ if τ ∈ (P0(T ∪
T ′))2. Thus τ is odd over T ∪ T ′ and so is Πhτ , which implies that
1
2
(Πhτ |T (m) + Πhτ |T ′(m)) = 0 = τ (m). This completes the proof.

Lemma 3.3. Assume that T ∈ Th has three neighbors and let wσ ∈
P0

2(T ) be defined by (3.3). Then

‖(σ − Πhσ)− curlwσ‖0,T . h2
T‖σ‖2,T ∗ .

Proof. For τ ∈ (P1(T ∗))2 and ϕ ∈ P0
2(T ), it holds that (since rot Πhτ |T =

0)

(τ − Πhτ , curlϕ)T = (rot τ , ϕ)T −
∫
∂T

(τ − Πhτ ) · tTϕds.

Moreover, for each edge e ∈ ET with the midpoint me, we get by Simp-
son’s rule and Lemma 3.2∫

e

(τ − Πhτ ) · tTϕds =
2

3
(τ − Πhτ )|T (me) · tTϕ(me)

= −2

3
· 1

2
[[Πhτ · t]](me)ϕ(me)

= −1

2

∫
e

[[Πhτ · t]]ϕds,
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which gives

(τ − Πhτ , curlϕ)T = (rot τ , ϕ)T +
1

2

∫
∂T

[[Πhτ · t]]ϕds.

Now observe that (τ − Πhτ )|T belongs to curl P0
2(T ) if τ ∈ (P1(T ∗))2,

since div(τ −Πhτ )|T = 0 by the commuting property of Πh and
∫
e
(τ −

Πhτ ) · nT ds = 0 for every edge e ∈ ET . In view of the definition (3.3),
we conclude that τ − Πhτ = curlwτ on T if τ ∈ (P1(T ∗))2. It is also
easy to see that the following bound holds for τ ∈ (H2(Ω))2

‖(τ −Πhτ )−curlwτ‖0,T . ‖τ‖1,T +‖ curlwτ‖0,T . ‖τ‖1,T ∗ ≤ ‖τ‖2,T ∗ .

Now the proof is completed by applying the Bramble–Hilbert lemma.

As a direct consequence of Theorem 3.1, we get the asymptotic ex-
actness of the error estimator η defined by (2.6).

Theorem 3.4. Under the assumption of Theorem 3.1, we have

‖σ − σh‖0,Ω = η +O(h
3
2 ).

Moreover, ∣∣∣∣ η

‖σ − σh‖0,Ω

− 1

∣∣∣∣ = O(h
1
2 ),

provided that there exists a constant C > 0 independent of the mesh
size h such that

‖σ − σh‖0,Ω ≥ Ch.

Proof. By Theorem 3.1, we have∣∣‖σ − σh‖0,Ω − η
∣∣ ≤ ( ∑

T∈Th

‖(σ − σh)− curlψT‖2
0,T

)1/2

. h
3
2 ,

and thus ∣∣∣∣ η

‖σ − σh‖0,Ω

− 1

∣∣∣∣ . h
3
2

h
= h

1
2 .

Remark 3.5. It is straightforward to extend the above results to the
mixed boundary condition

u = 0 on ΓD and ∇u · n = gN on ΓN ,

where ∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅ and n is the unit outward normal
vector to ∂Ω. (In this case the tangential jump [[τ · t]]|e is set to be zero
for e ⊂ ΓN).
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Remark 3.6. The proof of Theorem 3.1 crucially depends on some
super-closeness results which have been derived only for uniform trian-
gulations (assuming that the exact solution is regular enough). However,
as suggested by numerical results presented in the next section and some
theoretical results derived for primal finite elements [13,17], it is expected
that the asymptotic exactness of η would be valid as well for non-uniform
meshes satisfying the so-called (α, σ)-condition [17].

4. Numerical Experiments

To confirm the theoretical result established in the previous section,
some numerical experiments are carried out for the Poisson equation{−∆u = f in Ω = (0, 1)2

u = 0 on ∂Ω

with the function f determined by the exact solution

u(x, y) = x(1− x) sin(πy).

In the first experiment the computation is performed on a sequence of
uniform triangulations {Th} with the horizontal mesh size h = 1/2k (k =
2, 3, 4, · · · ) as depicted in Fig. 1. For the vector approximation σh com-
puted by the mixed finite element method (2.3)–(2.4) over each triangu-
lation Th, we report the values of the actual error ‖σ−σh‖0,Ω, the error
estimator η defined by (2.6) and the effectivity index θ = η/‖σ−σh‖0,Ω

in Table 1. It is clearly observed that the effectivity index converges to
unity, in agreement with the theoretical result (more quickly than O(h

1
2 )

predicted by Theorem 3.4). The actual error ‖σ − σh‖0,Ω shown in the
second column of Table 1 is calculated by applying a high-order quadra-
ture locally on each element of the given triangulation Th and summing
the local errors.

Next we consider a sequence of triangulations obtained by perturbing
each interior vertex (x, y) of the uniform triangulation Th by (δx, δy),
where δx = δy = 0.5h1.2 sin(πxy). The perturbed triangulations corre-
sponding to the uniform ones of Fig. 1 are depicted in Fig. 2 and the
numerical results are reported in Table 2 in the same fashion as Table 1.
Currently, Theorem 3.4 does not cover this kind of triangulations but it
seems that the effectivity index converges to unity as the mesh is refined
(although at a much slower rate than in the first case).
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Figure 1. Uniform triangulations with 1/h = 4, 8 and 16

Table 1. Actual errors, error estimators and effectivity
indices on uniform triangulations

1/h ‖σ − σh‖0,Ω η θ

4 1.329221e–1 1.322683e–1 0.995081

8 6.809937e–2 6.827401e–2 1.002565

16 3.426935e–2 3.430849e–2 1.001142

32 1.716268e–2 1.716862e–2 1.000346

64 8.584860e–3 8.585665e–3 1.000094

128 4.292870e–3 4.292975e–3 1.000024

256 2.146490e–3 2.146504e–3 1.000006

512 1.073252e–3 1.073254e–3 1.000002
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