SOME EXAMPLES OF WEAKLY FACTORIAL RINGS

Gyu Whan Chang

Abstract

Let D be a principal ideal domain, X be an indeterminate over $D, D[X]$ be the polynomial ring over D, and $R_{n}=$ $D[X] /\left(X^{n}\right)$ for an integer $n \geq 1$. Clearly, R_{n} is a commutative Noetherian ring with identity, and hence each nonzero nonunit of R_{n} can be written as a finite product of irreducible elements. In this paper, we show that every irreducible element of R_{n} is a primary element, and thus every nonunit element of R_{n} can be written as a finite product of primary elements.

1. Introduction

Let D be an integral domain, X be an indeterminate over $D, D[X]$ be the polynomial ring over D, and $R_{n}=D[X] /\left(X^{n}\right)$ for an integer $n \geq 1$. Clearly, R_{n} is a commutative ring with identity $1+\left(X^{n}\right)$, and since $\left(X^{n}\right) \cap D=(0), D$ can be considered as a subring of R_{n}. Note that if $\alpha \in R_{n}$, then $\alpha=a_{0}+a_{1} X+\cdots+a_{n-1} X^{n-1}+\left(X^{n}\right)$ for some unique $a_{i} \in D$; so if we let $x=X+\left(X^{n}\right)$, then x is a prime element of $R_{n}, \alpha=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}$, and $\alpha=0$ if and only if $a_{0}=$ $a_{1}=\cdots=a_{n-1}=0$. Also, if $\beta=b_{0}+b_{1} x+\cdots b_{n-1} x^{n-1} \in R_{n}$, then

[^0]$\alpha+\beta=\sum_{k_{0}}^{n-1}\left(a_{k}+b_{k}\right) x^{k}$ and $\alpha \cdot \beta=a_{0} b_{0}+\left(a_{1} b_{0}+a_{0} b_{1}\right) x+\cdots+$ $\left(a_{n-1} b_{0}+a_{n-2} b_{1}+\cdots+a_{1} b_{n-2}+a_{0} b_{n-1}\right) x^{n-1}=\sum_{k=0}^{n-1}\left(\sum_{i+j=k} a_{i} b_{j}\right) x^{k}$.

Let R be a commutative ring with identity and $U(R)$ be the set of units of R. An $a \in R$ is said to be primary if $a R$ is a primary ideal. An integral domain is called a weakly factorial domain if its nonzero nonunit can be written as a finite product of primary elements [1]. For convenience, in this paper, we will say that R is a weakly factorial ring if every nonzero nonunit of R can be written as a finite product of primary elements. Hence, weakly factorial domains are weakly factorial rings. Two elements $a, b \in R$ are said to be associates if $a R=b R$, i.e., $a=b c_{1}$ and $b=a c_{2}$ for some $c_{1}, c_{2} \in R$. An $a \in R$ is said to be irreducible if $a=b c$ implies that either b or c is associated with a.

Let D be a principal ideal domain (PID). Clearly, $R_{1}=D$, and thus R_{1} is a weakly factorial ring. Moreover, in [2, Corollary 11], it was proved that R_{2} is a weakly factorial ring. In this short paper, we show that R_{n} is a weakly factorial ring for all integers $n \geq 1$. Note that R_{n} is a commutative Noetherian ring with identity, and hence each nonzero nonunit of R_{n} can be written as a finite product of irreducible elements. Thus, to prove that R_{n} is a weakly factorial ring, it suffices to show that every irreducible element of R_{n} is primary. This will be proved by a series of lemmas.

2. Main Results

Let D be an integral domain, $D[X]$ be the polynomial ring over D, and $R_{n}=D[X] /\left(X^{n}\right)$ for an integer $n \geq 1$. In this section, we show that R_{n} is a weakly factorial ring by a series of lemmas.

Lemma 1. (cf. [2, Lemma 1]) Let $\alpha=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1} \in R_{n}$. Then α is a unit of R_{n} if and only if a_{0} is a unit of D.

Proof. If α is a unit, then there is a $\beta=b_{0}+b_{1} x+\cdots+b_{n-1} x^{n-1} \in R_{n}$ such that $\alpha \cdot \beta=1$. Thus, $a_{0} b_{0}=1$. Conversely, assume that a_{0} is a unit of D, and let $c \in D$ with $a_{0} c=1$. Note that $\alpha R_{n}=c \alpha R_{n}$; so replacing α with $\alpha \cdot c$ if necessary, we may assume that $a_{0}=1$. Let $c_{0}, c_{1}, \ldots, c_{n-1} \in D$ be such that

$$
\left\{\begin{array}{l}
c_{0}=1 \\
c_{1}+a_{1} c_{0}=0 \\
c_{2}+c_{1} a_{1}+c_{0} a_{2}=0 \\
\cdots \\
c_{n-1}+c_{n-2} a_{1}+\cdots+c_{0} a_{n-1}=0
\end{array}\right.
$$

and let $\gamma=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$. Clearly, such c_{i} 's exist and $\alpha \gamma=1$.

Lemma 2. (cf. [2, Lemma 2]) Let $\alpha, \beta \in R_{n}$. Then α and β are associates if and only if there is a $\theta \in U\left(R_{n}\right)$ such that $\alpha=\theta \beta$. Hence $\alpha \in R_{n}$ is irreducible if and only if $\alpha=\beta \gamma$ for $\beta, \gamma \in R_{n}$ implies that either β or γ is a unit.

Proof. Let $\alpha=a_{i} x^{i}+a_{i+1} x^{i+1}+\cdots+a_{n-1} x^{n-1}$ and $\beta=b_{j} x^{j}+$ $b_{j+1} x^{j+1}+\cdots+b_{n-1} x^{n-1}$ such that $a_{i} \neq 0, b_{j} \neq 0$, and $0 \leq i \leq j$. If α and β are associates, then $\alpha=\beta \cdot \theta$ for some $\theta \in R_{n}$. Note that $i \leq j$; so if we let $\gamma=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$, then $j=i$ and $a_{i}=c_{0} b_{j}$. Similarly, we can find an element $d \in D$ such that $b_{j}=a_{i} d$. Hence $a_{i}=c_{0} d a_{i}$, and since $a_{i} \neq 0$, we have $c_{0} d=1$ or $c_{0} \in U(D)$. Thus, θ is a unit of R_{n} by Lemma 1. The converse is clear.

Lemma 3. (cf. [2, Theorem 5]) Let D be a PID and $\alpha=a_{0}+a_{1} x+$ $\cdots+a_{n-1} x^{n-1} \in R_{n}$. If α is irreducible, then either (i) $a_{0}=0$ and $a_{1} \in U(D)$ or (ii) $a_{0}=u p^{k}$ for some prime $p \in D, u \in U(D)$, and integer $k \geq 1$.

Proof. Assume that $a_{0}=0$. Then $a_{1} \neq 0$, because $a_{2} x^{2}+\cdots+$ $a_{n-1} x^{n-1}=x\left(a_{2} x+\cdots+a_{n-1} x^{n-2}\right)$ and both x and $a_{2} x+\cdots+a_{n-1} x^{n-2}$ are not units by Lemma 1 . Moreover, if a_{1} is a nonzero nonunit, then $a_{1} x+\cdots+a_{n-1} x^{n-1}=x\left(a_{1}+a_{2} x \cdots+a_{n-1} x^{n-2}\right)$, and since both x and $a_{1}+a_{2} x \cdots+a_{n-1} x^{n-2}$ are not units by Lemma $1, \alpha$ is not irreducible by Lemma 2 , a contradiction. Thus, a_{1} is a unit of D.

Next, assume that $a_{0} \neq 0$. If a_{0} is not of the form $u p^{k}$, then there are nonzero $b_{0}, c_{0} \in D$ such that $a_{0}=b_{0} c_{0}$ and $\operatorname{gcd}\left(b_{0}, c_{0}\right)=1$. Since D is a PID, there exist $b_{1}, c_{1} \in D$ so that $b_{0} c_{1}+b_{1} c_{0}=a_{1}$. Again, D being a PID guarantees that there are $b_{2}, c_{2} \in D$ such that $b_{0} c_{2}+b_{2} c_{0}=a_{2}-b_{1} c_{1}$. Repeating this process, we can choose $b_{2}, \ldots, b_{n-1}, c_{2}, \ldots, c_{n-1} \in D$ so that

$$
\left(b_{0}+b_{1} x+\cdots+b_{n-1} x^{n-1}\right) \cdot\left(c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}\right)=\alpha
$$

hence α is not irreducible by Lemmas 1 and 2 . Thus, a_{0} must be of the form $u p^{k}$ for some prime $p \in D, u \in U(D)$, and integer $k \geq 1$.

We are now ready to prove the main result of this paper.
Theorem 4. (cf. [2, Corollary 11]) If D is a PID, then the ring $R_{n}=D[X] /\left(X^{n}\right)$ is a weakly factorial ring for all integers $n \geq 1$.

Proof. Note that R_{n} is a Noetherian ring; hence each element of R_{n} can be written as a finite product of irreducible elements. Hence if we show that each irreducible element of R_{n} is primary, then R_{n} is a weakly factorial ring.

Let $\alpha=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1} \in R_{n}$ be irreducible. By Lemma 3, there are only two cases we have to consider. First, assume $a_{0}=0$ and $a_{1} \in U(D)$. Then $\alpha R_{n}=x R_{n}$ by Lemma 1, and hence α is prime (so primary). Next, assume $a_{0}=u p^{k}$ for some $u \in U(D)$, prime $p \in D$ and integer $k \geq 1$. It is known that if $\sqrt{\alpha R_{n}}$ is a maximal ideal, then αR_{n} is primary [2, Lemma 10]; so it suffices to show that $\sqrt{\alpha R_{n}}$ is maximal. Let $\beta \in R_{n} \backslash \sqrt{\alpha R_{n}}$, and put $\beta=b_{0}+b_{1} x+\cdots+b_{n-1} x^{n-1}$. Note that if $\delta=c_{1} x+\cdots+c_{n-1} x^{n-1} \in R_{n}$, then $\delta^{n}=0$, and hence $\delta \in \sqrt{\alpha R_{n}}$. Hence $b_{0} \notin \sqrt{\alpha R_{n}}$ and $p \in \sqrt{\alpha R_{n}}$. Note also that if $b_{0} \in p D$, then $b_{0}=p z$ for some $z \in D$, and so $b_{0}=p z \in \sqrt{\alpha R_{n}}$, a contradiction. So $b_{0} \notin p D$, and since D is a PID, we have $b_{0} z_{1}+p z_{2}=1$ for some $z_{1}, z_{2} \in D$. Thus, $1=\beta z_{1}+p z_{2}-z_{1}\left(b_{1} x+\cdots+b_{n-1} x^{n-1}\right) \in \beta R_{n}+\sqrt{\alpha R_{n}}$. Therefore, $\sqrt{\alpha R_{n}}$ is maximal.

Corollary 5. If \mathbb{Z} is the ring of integers, then $\mathbb{Z}[X] /\left(X^{n}\right)$ is a weakly factorial ring for all integers $n \geq 1$.

Proof. This follows directly from Theorem 4 because \mathbb{Z} is a PID.
Acknowledgement. The author would like to thank the referee for his/her useful comments.

References

[1] D.D. Anderson and L.A. Mahaney, On primary factorizations, J. Pure Appl. Algebra 54 (1988), 141-154.
[2] G.W. Chang and D. Smertnig, Factorization in the self-idealization of a PID, Boll. Unione Mat. Ital. (9) IV (2013), 363-377.

Department of Mathematics
Incheon National University
Incheon 406-772, Korea
E-mail: whan@incheon.ac.kr

[^0]: Received April 1, 2013. Revised September 9, 2013. Accepted September 9, 2013. 2010 Mathematics Subject Classification: 13A05, 13F15 .
 Key words and phrases: PID, $D[X] /\left(X^{n}\right)$, weakly factorial ring, irreducible element.

 This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0007069).
 © The Kangwon-Kyungki Mathematical Society, 2013.
 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

