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ON THE SENSITIVITY OF THE SOLUTION OF THE

GENERALIZED LYAPUNOV EQUATION

Hosoo Lee

Abstract. Some results on the sensitivity of the solution of the
generalized Lyapunov equation

An−1X + An−2XA∗ + · · ·+ X(A∗)n−1 = B,

are shown follow easily from well-known theorems in functional anal-
ysis.

1. Introduction

In [3], Bhatia and Uchiyama have shown that the equation

An−1X + An−2XB + · · ·+ AXBn−2 +XBn−1 = C,

has a unique solution when the eigenvalues of A and B are in the sector

{w ∈ C : w 6= 0,−π/n < argw < π/n},

and the unique solution X can be expressed as

(1.1) X =
sin π

n

π

∫ ∞
0

(t+ An)−1C(t+Bn)−1t1/ndt.

The special case when n = 2,

AX +XB = C
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is the much studied Sylvester equation, of great interest in operator
theory, numerical analysis, and engineering. There is a long tradition of
finding different expressions for the solution of Sylvester equation in the
form of operator integrals, some prominent examples of which occur in
the works of E. Heinz, M. G. Krein, M. Rosenblum, and R. Bhatia, C.
Davis and A. McIntosh.

The object of this note is the equation

(1.2) An−1X + An−2XA∗ + · · ·+X(A∗)n−1 = B,

where A,B are m × m complex matrices, and the sensitivity of the
solution of (1.2).

2. Main results

Let M be the set of m × m complex matrices. Denote S = {X ∈
M : σ(X) ⊂ {w ∈ C : w 6= 0,−π/n < argw < π/n}}. The condition of
A ∈ S is sufficient to ensure that the equation (1.2) has a unique solution
X for every B. From the identity (1.1) of Bhatia and Uchiyama, the
solution of (1.2) can be expressed as

(2.3) X =
sin π

n

π

∫ ∞
0

(t+ An)−1B(t+ (A∗)n)−1t1/ndt.

From this it is immediately clear that if B is positive (semidefinite) then
so is X.

For A ∈ M, let ‖A‖ be the norm of A as a linear operator on the
Euclidean space Cm. If A is a linear operator on M, let

‖A‖ := sup{‖A(X)‖ : X ∈M, ‖X‖ = 1}.

Now, given A ∈ M, define Ln,A(X) = An−1X + An−2XA∗ + · · · +
X(A∗)n−1. This is a linear operator on M, and it is invertible if the eigen-
values of A are in the sector {w ∈ C : w 6= 0,−π/n < argw < π/n}.
The equation (2.3) can be written also as

L−1n,A(B) =
sin π

n

π

∫ ∞
0

(t+ An)−1B(t+ (A∗)n)−1t1/ndt.

The norm of the operator L−1n,A is a measure of the sensitivity of the
solution. The following theorem gives a way of evaluating it.



On the sensitivity of the solution of the generalized Lyapunov equation 347

Theorem 1. For every matrix A in S,

(2.4) ‖L−1n,A‖ = ‖L−1n,A(I)‖.

Proof. Let H = L−1n,A(I). As noted above, H is a positive matrix.
Define a map Γn,A on M as

(2.5) Γn,A(Y ) := H−1/2L−1n,A(Y )H−1/2.

Then Γn,A is a positive map (it takes positive matrices to positive ma-
trices) and is unital (it takes I to I). By the theorem of Russo and
Dye [7] such a map on any C∗-algebra has norm 1. So ‖Γn,A‖ = 1 and
hence ‖L−1n,A‖ ≤ ‖H‖. But, by the definition of H, we must then have

‖L−1n,A‖ = ‖H‖. This proves (2.4).

Let 〈X, Y 〉 = tr(X∗Y ) be the Frobenius inner product on M. If A
is a linear map on M, its adjoint A∗, defined with respect to this inner
product, is the map satisfying

〈A(X), Y 〉 = 〈X,A∗(Y )〉 for all X, Y.

Lemma 2. Let A ∈ S. Then

L∗n,A = Ln,A∗(2.6)

Γ∗n,A(X) = L−1n,A∗(H−1/2XH−1/2).(2.7)

Proof. By a simple calculation with traces, we have

〈L∗n,A(X), Y 〉 = 〈X,Ln,A(Y )〉
= 〈X,An−1Y + An−2Y A∗ + · · ·+ Y (A∗)n−1〉
= 〈X,An−1Y 〉+ 〈X,An−2Y A∗〉+ · · ·+ 〈X, Y (A∗)n−1〉
= 〈(An−1)∗X, Y 〉+ 〈(An−2)∗XA, Y 〉+ · · ·+ 〈XAn−1, Y 〉
= 〈(An−1)∗X + (An−2)∗XA+ · · ·+XAn−1, Y 〉
= 〈Ln,A∗(X), Y 〉

and

〈Γ∗n,A(X), Y 〉 = 〈X,Γn,A(Y )〉
= 〈X,H−1/2L−1n,A(Y )H−1/2〉
= 〈H−1/2XH−1/2,L−1n,A(Y )〉
= 〈(L−1n,A)∗(H−1/2XH−1/2), Y 〉

(2.6)
= 〈(L−1n,A∗)(H−1/2XH−1/2), Y 〉.
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A linear map A on M is called doubly stochastic if it is (i) positive,
(ii) unital, and (iii) trace preserving, i.e., trA(X) = trX for all X. The
third condition is equivalent to the condition that A∗ is unital (see [1]).
It is natural to ask whether the map Γn,A defined in (2.5) is doubly
stochastic.

Lemma 3. If A in a normal matrix in S, then the operator Γn,A is
doubly stochastic.

Proof. By the definition of H and equation (2.7), we have

Γ∗n,A(I) = L−1n,A∗(H−1)

=
sin π

n

π

∫ ∞
0

(t+ (A∗)n)−1H−1(t+ An)−1t1/ndt

=

∫ ∞
0

(t+ (A∗)n)−1
(∫ ∞

0

(s+ An)−1(s+ (A∗)n)−1s1/nds

)−1
(t+ An)−1t1/ndt.

This shows that if A is normal then Γ∗n,A is unital and hence Γn,A is
doubly stochastic.

Doubly stochastic maps have several special properties. The one rel-
evant to our discussion is that they are contractive with respect to every
unitarily invariant norm on M (see [1]).

Theorem 4. Let A be a normal matrix in S. Then

(2.8) |‖L−1n,A(X)|‖ ≤ ‖L−1n,A(I)‖ |‖X|‖
for every unitarily invariant norm |‖ · |‖.

Proof. Let A be a normal matrix. Then by Lemma 3, Γn,A is doubly
stochastic and hence

(2.9) |‖Γn,A(X)|‖ ≤ |‖X|‖
for every unitarily invariant norm |‖·|‖. All unitarily invariant norms sat-
isfy the inequality |‖XY Z|‖ ≤ |‖X‖ |‖Y |‖ |‖Z|‖ for any three matrices
X, Y, Z. So from (2.9), we get
(2.10)
|‖L−1n,A(X)|‖ = |‖H1/2Γn,A(X)H1/2|‖ ≤ ‖H‖|‖X|‖ = ‖L−1n,A(I)‖ |‖X|‖.
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It is a basic fact from [5] that if T is an operator between normed
spaces and T ∗ is its adjoint, then ‖T‖ = ‖T ∗‖. Let

H∗ =
(
L−1n,A

)∗
(I).

Then from (2.6) we have

H∗ = L−1n,A∗(I) =
sin π

n

π

∫ ∞
0

(t+ (A∗)n)−1(t+ An)−1t1/ndt.

Theorem 5. Let A ∈ S, and let B ≥ O (that is, B is a positive
semidefinite matrix). Let X be the solution of (1.2). Then we have

(2.11) λmin(H∗) tr(B) ≤ tr(X) ≤ λmax(H∗) tr(B).

Proof. Let X be the solution of (1.2) when A ∈ S and B ≥ O. Then

(2.12)
tr(X) = 〈X, I〉 = 〈L−1n,A(B), I〉 = 〈B, (L−1n,A)∗(I)〉

= 〈B,H∗〉 = tr(BH∗)

Choose an orthonormal basis in which H∗ is diagonal, and calculate the
traces. Since H∗ is positive, this gives (2.11).

Recall that the norm ‖A‖p for 1 ≤ p ≤ ∞ is defined as

‖A‖p =

(
m∑
j=1

(sj(A))p

)1/p

,

where sj(A), 1 ≤ j ≤ m, are the singular values of A arranged in de-
creasing order. Note that the operator norm ‖A‖ := ‖A‖∞ = s1(A). If
A is a linear operator on M, let

‖A‖p→p = sup{‖A‖p : ‖X‖p = 1}.
This is the norm of the operator A when the underlying space M is
equipped with the norm ‖ · ‖p.

A well-known theorem, called the Calderon-Lions interpolation theo-
rem [5], implies that for 1 ≤ p ≤ ∞ and a linear operator A we have

(2.13) ‖A‖p→p ≤ ‖A‖1/p1→1‖A‖1−1/p∞→∞.

Using this we can prove the following.

Theorem 6. Let A ∈ S and

H =
sin π

n

π

∫ ∞
0

(t+ An)−1(t+ (A∗)n)−1t1/ndt,
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H∗ =
sin π

n

π

∫ ∞
0

(t+ (A∗)n)−1(t+ An)−1t1/ndt.

Then, for 1 ≤ p ≤ ∞,
(2.14) ‖L−1n,A‖p→p ≤ ‖H∗‖

1/p‖H‖1−1/p.

Proof. In this notation, Theorem 1 can be restated as

‖L−1n,A‖∞→∞ = ‖H‖.
Since the norm‖ · ‖1 is dual to ‖ · ‖∞, we have

‖L−1n,A‖1→1 =
∥∥(L−1n,A)∗∥∥∞→∞ = ‖L−1n,A∗‖∞→∞ = ‖L−1n,A∗(I)‖ = ‖H∗‖.

This shows that for p = 1,∞, we have equality in (2.14). For other
values of p, we get this inequality using the interpolation result (2.13)
cited above.
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