DOI QR코드

DOI QR Code

Effects of Low Workfunction Metal Acetate Layers on the Electroluminescent Characteristics of Organic Light-Emitting Diodes

저일함수 금속 아세트산 화합물 층을 사용한 유기발광다이오드의 전기발광 특성 향상

  • Kim, Mansu (Department of Chemical Engineering, Kyung Hee University) ;
  • Yu, Geun-Chae (Department of Chemical Engineering, Kyung Hee University) ;
  • Kim, Young Chul (Department of Chemical Engineering, Kyung Hee University)
  • 김만수 (경희대학교 화학공학과) ;
  • 류근채 (경희대학교 화학공학과) ;
  • 김영철 (경희대학교 화학공학과)
  • Received : 2013.05.30
  • Accepted : 2013.06.29
  • Published : 2013.10.01

Abstract

We investigated the effects of a cathode underlayer on the electroluminescence (EL) characteristics of organic light-emitting diodes (OLEDs) using various metal acetates (M-acetate, M = Li, Na, K, Cs) as a cathode underlayer. When 1 nm thick M-acetate layers were used as a cathode underlayer, the OLEDs with M-acetate showed better EL performance than the device with the conventional LiF electron injection layer except the device with Cs-acetate. More enhanced current density and improved EL characteristics were obtained when lower work function metal acetate was employed. In addition, the optimum M-acetate layer thickness that gives the best device performance proved to be 0.7 and 2.0 nm for Li-acetate and Cs-acetate, respectively, probably depending on the molecular size of M-acetate. The OLEDs with the M-acetate layers of optimized thickness demonstrated more than 60% enhanced current efficiency compared with that of the device using an LiF layer at the same applied voltage.

유기발광다이오드(Organic Light-Emitting Diodes, OLEDs)의 효율을 향상시키기 위하여 다양한 아세트산금속(Macetate, M: Li, Na, K, Cs)을 cathode underlayer 소재로 사용하고 이들이 소자의 전자주입 및 발광 특성에 미치는 영향에 대하여 연구하였다. 1 nm 두께의 M-acetate 층을 cathode underlayer로 사용한 경우 Cs-acetate를 사용한 소자를 제외한 모든 소자에서 기존의 LiF 전자주입층을 사용한 소자보다 효율적인 전자주입 및 향상된 발광특성을 보였으며, M-acetate에 포함된 금속의 일함수가 작을수록 높은 전류밀도와 우수한 발광특성을 보였다. 또한, cathode underlayer의 두께가 소자의 특성에 미치는 영향을 분석한 결과, 사용된 M-acetate의 분자크기에 따라 각기 다른 두께(Li-acetate 0.7 nm, Cs-acetate 2.0 nm)에서 최적의 발광특성을 보였으며 기존의 LiF 층을 사용한 소자에 비하여 동일 인가전압에서 전류효율이 약 60% 향상된 결과를 얻을 수 있었다.

Keywords

References

  1. Qui, Y., Gao, Y., Wei, P. and Wang, L., "Organic Light-Emitting Diodes with Improved Hole-Electron Balace by using Copper Phthalocyanine/Aromatic Diamine Multiple Quantum Wells," Appl. Phys. Lett., 80, 2628(2002). https://doi.org/10.1063/1.1468894
  2. Stossel, M., Staudigel, J., Steuber, F., Simmerer, J. and Winnacker, A., "Impact of the Cathode Metal Work Function on the Performance of Vacuum-Deposited Organic Light Emitting-Devices," Appl. Phys. A, 68, 387-390(1999). https://doi.org/10.1007/s003390050910
  3. Hung, L. S., Tang, C. W. and Mason, M. G., "Enhanced Electron Injection in Organic Electroluminescence Devices using an Al/LiF Electrode," Appl. Phys. Lett., 70, 152(1997). https://doi.org/10.1063/1.118344
  4. Zhang, S. T., Ding, X.M., Zhao, J. M., Shi, H. Z., He, J., Xiong, Z. H., Ding, H. J., Obbard, E. G., Zhan, Y. Q., Huang, W. and Hou, X. Y., "Buffer-Layer-Induced Barrier Reduction: Role of Tunneling in Organic Light-Emitting Devices," Appl. Phys. Lett., 84(3), 425(2004). https://doi.org/10.1063/1.1641166
  5. Hung, L. S., Zhang, R. Q., He, P. and Mason, G., "Contact Formation of LiF/Al Cathodes in Alq-based Organic Light-Emitting Diodes," J. Phys. D Appl. Phys., 35, 103-107(2002). https://doi.org/10.1088/0022-3727/35/2/302
  6. Jabbour, G. E., Kippelen, B., Armstrong, N. R. and Peyghambarian, N., "Aluminum Based Cathode Structure for Enhanced Electron Injection in Electroluminescent Organic Devices," Appl. Phys. Lett., 73, 1185(1998). https://doi.org/10.1063/1.122367
  7. Mason, M. G., Tang, C. W., Hung, L.-S., Raychaudhuri, P., Madathil, J., Giesen, D. J., Yan, L., Le, Q. T., Gao, Y., Lee, S. T., Liao, L. S., Cheng, L. F., Salaneck, W. R., dos Santos, D. A. and Bredas, J. L., "Interfacial Chemistry of Alq3 and LiF with Reactive Metals," J. Appl. Phys., 89(5), 2756(2001). https://doi.org/10.1063/1.1324681
  8. Watkins, N. J. and Gao, Y., "Vacuum Level Alignment of Pentacene on LiF/Au," J. Appl. Phys., 94(2), 1289(2003). https://doi.org/10.1063/1.1585112
  9. Sun, Z., Ding, X., Ding, B., Gao, X., Hu, Y., Chen, X., He, Y. and Hou, X., "Buffer-Enhanced Electron Injection in Organic Light-Emitting Devices with Copper Cathode," Organic Electronics, 14, 511-515(2013). https://doi.org/10.1016/j.orgel.2012.11.017
  10. Lee, J., Park, Y., Kim, D. Y., Chu, H. Y., Lee, H. and Do, L.-M., "High Efficiency Organic Light-Emitting Devices with Al/NaF Cathode," Appl. Phys. Lett., 82(2), 173(2003). https://doi.org/10.1063/1.1537048
  11. Chan, M. Y., Lai, S. L., Fung, M. K., Lee, C. S. and Lee, S. T., "Impact of the Metal Cathode and CsF Buffer Layer on the Performance of Organic Light-Emitting Devices," J. Appl. Phys., 95, 5397(2004). https://doi.org/10.1063/1.1707201
  12. Choi, H. W., Kim, S. Y., Kim, W.-K. and Lee, J.-L., "Enhancement of Electron Injection in Inverted Top-Emitting Organic Light-Emitting Diodes Using an Insulating Magnesium Oxide Buffer Layer," Appl. Phys. Lett., 87, 082102(2005). https://doi.org/10.1063/1.2033129
  13. Zhang, S. T., Zhou, Y. C., Zhao, J. M., Zhan, Y. Q., Wang, Z. J., Wu, Y., Ding, X. M. and Hou, X. Y., "Role of Hole Playing in Improving Performance of Organic Light-Emitting Devices with $Al_{2}O_{3}$ Layer Inserted at the Cathode-Organic Interface," Appl. Phys. Lett., 89, 043502(2006). https://doi.org/10.1063/1.2220013
  14. Xu, Q., Ouyang, J., Yang, Y., Ito, T. and Kido, J., "Ultrahigh Efficiency Green Polymer Light-Emitting Diodes by Nanoscale Interface Modification," Appl. Phys. Lett., 83, 4695(2003). https://doi.org/10.1063/1.1630848
  15. Zhan, Y. Q., Xiong, Z. H., Shi, H. Z., Zhang, S. T., Xu, Z., Zhong, G. Y., He, J., Zhao, J. M., Wang, Z. J., Obbard, E., Ding, H. J., Wang, X. J. and Ding, X. M., "Sodium Stearate, an Effective Amphiphilic Molecule Buffer Material Between Organic and Metal Layers in Organic Light-Emitting Devices," Appl. Phys. Lett., 83, 1656(2003). https://doi.org/10.1063/1.1601675
  16. Arvia, A. J. and Salvarezza, R. C., "An Interdisciplinary Approach to the Electrochemistry at Solid Electrodes," J. Braz. Chem. Soc., 8(2), 91-100(1997). https://doi.org/10.1590/S0103-50531997000200002