DOI QR코드

DOI QR Code

A Study on Prediction of Effective Thermal Conductivity of Nano-Fluids Using Generalized Self-Consistent Model and Modified Eshelby Model

일반화된 자기일치모델과 수정된 에쉘비 모델을 이용한 나노유체의 등가열전도계수 예측에 대한 연구

  • Lee, Jae-Kon (School of Mechanical and Automotive Engineering, Catholic Univ. of Daegu) ;
  • Kim, Jin Gon (School of Mechanical and Automotive Engineering, Catholic Univ. of Daegu)
  • 이재곤 (대구가톨릭대학교 기계자동차공학부) ;
  • 김진곤 (대구가톨릭대학교 기계자동차공학부)
  • Received : 2013.01.16
  • Accepted : 2013.07.18
  • Published : 2013.10.01

Abstract

Effective thermal conductivity of nanofluids has been predicted by using generalized self-consistent model and modified Eshelby model, which have been used for analysis of material properties of composites. A nanolayer between base fluid and nanoparticle, one of key factors for abrupt enhancement of thermal conductivity of nanofluids, is included in the analysis. The effective thermal conductivities of the nanofluid predicted by the present study show good agreement with those by models in the literature for the nanolayer with a constant or linear thermal conductivity. The predicted results by the present approach have been confirmed to be consistent with experiments for representative nanofluids such as base fluids of water or ethyleneglycol and nanoparticles of $Al_2O_3$ or CuO to be validated.

복합재의 물성치 해석에 일반적으로 사용되는 일반화된 자기일치모델(Generalized Self-Consistent Model)과 수정된 에쉘비모델(Modified Eshelby Model)을 이용하여 나노유체의 열전도계수를 예측할 수 있음을 보였다. 이 유체의 열전달효과를 대폭 향상시키는 대표적인 메카니즘 중 하나인 나노입자와 기본유체 사이에 존재하는 나노층의 영향을 고려하여 나노유체의 열전도계수를 예측하였다. 본 연구는 나노층의 열전도계수가 일정한 값을 가질 때 기존 대표적인 모델과 동일한 결과를 보였으며, 선형적으로 변할 때 역시 문헌에 있는 모델과 동등한 수준의 예측 값을 보였다. 알루미나와 산화구리를 나노입자로 물과 에틸렌글리콜을 기본유체로 한 나노유체의 열전도계수에 대한 실험결과와 본 모델의 예측결과를 비교함으로써 본 모델의 타당성을 입증하였다.

Keywords

References

  1. Lee, S., Choi, S. U. S., Li, S. and Eastman, J. A., 1999, "Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles," ASME J. Heat Transfer, Vol. 121, pp. 280-289. https://doi.org/10.1115/1.2825978
  2. Eastman, J. A., Choi, S. U. S., Li, S., Yu, W. and Thompson, L. J., 2001, "Anomalously Increased Effective Thermal Conducitvities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles," Applied Physics Letters, Vol. 78, pp. 718-720. https://doi.org/10.1063/1.1341218
  3. Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E. and Grulke, E. A., 2001, "Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions," Applied Physics Letters, Vol. 79, pp. 2252-2254. https://doi.org/10.1063/1.1408272
  4. Xie, H., Wang, J., Xi, T., Liu, Y. and Ai, F., 2002, "Thermal Conductivity Enhancement of Suspensions Containing Nanosized Alumina Particles," J. of Applied Physics, Vol. 91, pp. 4568-4572. https://doi.org/10.1063/1.1454184
  5. Hong, K. S., Hong, T. K. and Yang, H. S., 2006, "Thermal Conductivity of Fe Nanofluids Depending on the Cluster Size of Nanoparticles," Applied Physics Letters, Vol. 88, pp. 031901-1-3. https://doi.org/10.1063/1.2166199
  6. Keblinski, P., Phillpot, S. R., Choi, S. U. S. and Eastman, J. A., 2002, "Mechanims of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)," Int. J. of Heat and Mass Transfer, Vol. 45, pp. 855-863. https://doi.org/10.1016/S0017-9310(01)00175-2
  7. Wang, B. X., Zhou, L. P. and Peng, X. F., 2003, "A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid with Suspension of Nanoparticles," Int. J. of Heat and Mass Transfer, Vol. 46, pp. 2665-2672. https://doi.org/10.1016/S0017-9310(03)00016-4
  8. Jang, S. P. and Choi, S. U. S., 2004, "Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids," Applied Physics Letters, Vol. 84, pp. 4316-4318. https://doi.org/10.1063/1.1756684
  9. Prasher, R., Bhattacharya, P. and Phelan, P. E., 2005, "Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids)," Physical Review Letters, Vol. 94, pp. 025901-1-4. https://doi.org/10.1103/PhysRevLett.94.025901
  10. Xuan, Y., Li, Q. and Hu, W., 2003, "Aggregation Structure and Thermal Conductivity of Nanofluids," AIChE Journal, Vol. 49, pp. 1038-1043. https://doi.org/10.1002/aic.690490420
  11. Yu, W. and Choi, S. U. S., 2003, "The Role of Interfacial Layers in the Enhanced Thermal Nanofluids: A Renovated Maxwell Model," J. of Nanoparticle Research, Vol. 5, pp. 167-171. https://doi.org/10.1023/A:1024438603801
  12. Xue, Q. Z., 2003, "Model for Effective Thermal Conductivity of Nanofluids," Physics Letters A, Vol. 307, pp. 313-317. https://doi.org/10.1016/S0375-9601(02)01728-0
  13. Yu, W. and Choi, S. U. S., 2004, "The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Hamilton-Crosser Model," J. of Nanoparticle Research, Vol. 6, pp. 355-361. https://doi.org/10.1007/s11051-004-2601-7
  14. Xue, Q. and Xu, W. M., 2005, "A Model of Thermal Conductivity of Nanofluids with Interfacial Shells," Materials Chemistry and Physics, Vol. 90, pp. 298-301. https://doi.org/10.1016/j.matchemphys.2004.05.029
  15. Xie, H., Fujii, M. and Zhang, X., 2005, "Effect of Interfacial Nanolayer on the Effective Thermal Conductivity of Nanoparticle-Fluid Mixture," Int. J. of Heat and Mass Transfer, Vol. 48, pp. 2926-2932. https://doi.org/10.1016/j.ijheatmasstransfer.2004.10.040
  16. Miloh, T. and Benveniste, Y., 1988, "A Generalized Selfconsistent Method for the Effective Conductivity of Composites with Ellipsoidal Inclusions and Cracked Bodies," J. of Applied Physics, Vol. 63, pp. 789-796. https://doi.org/10.1063/1.340071
  17. Eshelby, J. D., 1957, "The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems," Proc. of the Royal Society of London, Vol. A241, pp. 376-396.
  18. Mori, T. and Tanaka, K., 1973, "Average Stress in the Matrix and Average Elastic Energy of Materials with Misfitting Inclusions," Acta Metallurgica, Vol. 21, pp. 571-574. https://doi.org/10.1016/0001-6160(73)90064-3
  19. Lee, J. K. and Kim, J. G., 2011, "Derivation of Governing Equation for Predicting Thermal Conductivity of Composites with Spherical Inclusions and Its Applications," Physics Letters A, Vol. 375, pp. 3739-3744. https://doi.org/10.1016/j.physleta.2011.08.060
  20. Park, Y. K., Lee, J. K. and Kim, J. G., 2008, "A New Approach to Predict the Thermal Conductivity of Composites with Coated Spherical Fillers And Imperfect Interface," Materials Transactions, Vol. 49, pp. 733-736. https://doi.org/10.2320/matertrans.MRA2007135
  21. Ren, Y., Xie, H. and Cai, A., 2005, "Effective Thermal Conductivity of Nanofluids Containing Spherical Nanoparticles," J. Phys. D: Appl. Phys., Vol. 38, pp. 3958-3961. https://doi.org/10.1088/0022-3727/38/21/019
  22. Yu, C. J., Richter, A. G., Datta, A., Durbin, M. K. and Dutta, P., 2000, "Molecular Layering In a Liquid on a Solid Substrate: An X-Ray Reflectivity Study," Physica B, Vol. 283, pp. 27-31. https://doi.org/10.1016/S0921-4526(99)01885-2
  23. Yu, C. J., Richter, A. G., Datta, A., Durbin, M. K. and Dutta, P., 1999, "Observation of Molecular Layering in Thin Liquid Films Using X-Ray Reflectivity," Physical Review Letters, Vol. 82, pp. 2326-2329. https://doi.org/10.1103/PhysRevLett.82.2326
  24. Masuda, H., Ebata, A., Teramae, K. and Hishinuma, N., 1993, "Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of Al2O3, SiO2 and TiO2 Ultra-Fine Particles)," Netsu Bussei, Vol. 4, pp. 227-233.
  25. Liu, M. S., Lin, M. C. C., Huang, I. T. and Wang, C. C., 2006, "Enhancement of Thermal Conductivity with Cuo for Nanofluids," Chemical Engineering &Technology, Vol. 29, pp. 72-77. https://doi.org/10.1002/ceat.200500184