DOI QR코드

DOI QR Code

Development of Multibody Dynamic Model of Cervical Spine for Virtual In Vitro Cadaveric Experiment

가상 생체외 사체 실험용 경추 다물체 동역학 모델 개발

  • Lim, Dae Seop (Dept. of Mechanical Engineering, Kyung Hee Univ.) ;
  • Lee, Ki Seok (Division of Mechanical & Automotive Engineering, Kongju Nat'l Univ.) ;
  • Kim, Yoon Hyuk (Dept. of Mechanical Engineering, Kyung Hee Univ.)
  • 임대섭 (경희대학교 기계공학과) ;
  • 이기석 (공주대학교 기계자동차공학부) ;
  • 김윤혁 (경희대학교 기계공학과)
  • Received : 2012.08.14
  • Accepted : 2013.07.19
  • Published : 2013.10.01

Abstract

In this study, a multibody dynamic model of the cervical spine was developed for a virtual in-vitro cadaveric experiment. The dynamic cervical spine model was reconstructed based on Korean CT images and the material properties of joints and soft tissue obtained from in-vitro experimental literature. The model was validated by comparing the inter-segmental rotation, multi-segmental rotations, load-displacement behavior, ligament force, and facet contact force with the published in-vitro experimental data. The results from the model were similar to published experimental data. The developed dynamic model of the cervical spine can be useful for injury analysis to predict the loads and deformations of the individual soft-tissue elements as well as for virtual in-vitro cadaveric experiments.

본 연구에서는 가상 생체외 사체실험을 수행할 수 있는 경추 다관절 동역학 모델을 개발하였다. 평균크기 한국인 의료영상과 관절 및 연부조직의 물성 정보를 기반으로 하여 경추 동역학 모델을 개발하였다. 개발된 모델의 검증을 위하여 경추 단분절 및 다분절 모멘트-각도 관계, 인대 하중 및 후관절 접촉력 등을 문헌의 사체실험 결과와 비교한 결과 매우 유사한 경향을 확인하였다. 본 연구에서 개발된 경추 동역학 모델은 앞으로 경추 사체실험 연구 뿐만 아니라 자동차 충돌시 경추 상해 분석 등의 다양한 경추 생체역학 연구 연구에 활용될 수 있을 것이다.

Keywords

References

  1. Nordin, M. and Frankel, V.H., 2001. Basic Biomechanics of the Musculoskeletal System, USA, Lippincott Williams & Wilkins.
  2. Bogduk, N. and Yoganandan, N., 2001, "Biomechanics of the Cervical Spine Part 3: Minor Injuries," Clinical Biomechanics, Vol.16, pp.267-275. https://doi.org/10.1016/S0268-0033(01)00003-1
  3. Ahn, H.S. and Diangelo, D.J., 2007, "Biomechanical Testing Simulation of a Cadaver Spine Specimen - Development and Evaluation Study," Spine, Vol.32, pp.330-336. https://doi.org/10.1097/01.brs.0000263331.78903.61
  4. De Jager, M.K.J., 1996, "Mathematical Head-Neck Models For Acceleration Impacts," PhD. Thesis, Technical University of Eindhoven.
  5. van der Horst, M. J., 2002, "Human Head Neck Response In Frontal, Lateral And Rear End Impact Loading: Modelling And Validation," PhD. Thesis, Technical University of Eindhoven.
  6. Ahn, H.S. and Diangelo, D.J., 2008, "Biomechanical Study of Artificial Cervical Disc Using Computer Simulation," Spine, Vol.33, pp.883-892. https://doi.org/10.1097/BRS.0b013e31816b1f5c
  7. de Jongh, A.H. Basson, and Scheffer, C. 2008, "Predictive Modeling of Cervical Disc Implant Wear" Journal of Biomechanics, vol.41, pp. 3177-3183. https://doi.org/10.1016/j.jbiomech.2008.08.025
  8. Shin, J.H. and Yoon, Y.H., 2011, "Effects of a Elderly Walker on Joint Kinematics and Muscle Activities of Lower Extremities using a Human Model," Trans. Korean Soc. Mech. Eng. B, Vol.35, pp.1243-1248.
  9. Lee, S.H. and Lee, S.B., 2009, "The Production and Usage of Korean Human Information in KISTI," Journal of the Korea Contents Association, Vol.7, No.2, pp.39-43.
  10. Yoganandan, N., Pintar,F.A. and Maiman, D.J., 2000, "Biomechanical Study of Pediactric Human Cervical Spine:A Finite Element Appraoch," Trans. of the ASME, Vol. 122, pp.60-71.
  11. Yoganandan, N. and Pintar, F.A., 2001, "Biomechanics of Cervical Spine Part 2. Cervical Spine Soft Tissue Responses and Biomechanical Modeling," Clinical Biomechanics, Vol. 16, pp.1-27. https://doi.org/10.1016/S0268-0033(00)00074-7
  12. Monteiro, N.M., Silva, M.P., Folgado, J.O. and Melancia, J.P., 2011, "Structural analysis of the Intervertebral Discs Adjacent to an Interbody Fusion using Multibody Dynamics and Finite Element Cosimulation," Multibody Syst Dyn, Vol. 25, pp.245-270. https://doi.org/10.1007/s11044-010-9226-7
  13. Nightingale, R.W., Winkelstein, B.A., Knaub, K.E., Richardson, W.J., Luck, J.F. and Myers, B.S., 2002, "Comparative Strengths and Structural Properties of the upper and lower Cervical Spine in Flexion and Extension," Journal of Biomechanics, Vol. 35, pp.725-732. https://doi.org/10.1016/S0021-9290(02)00037-4
  14. Nightingale, R.W., Chancey, V.C., Ottaviano, D., Luck, J.F., Tran, L. and Prange, M.T., 2007, Flexion and Extension Structural Properties and Strengths for Male Cervical Spine Segments," Journal of Biomechanics, Vol. 40, pp.535-542. https://doi.org/10.1016/j.jbiomech.2006.02.015
  15. Wheeldon, J.A., Pintar, F.A., Knowles, S.A. and Yoganandan, N., 2006, "Experimental Flexion/ Extension Data Corridors for Validation of Finite Element Models of the Young, Normal Cervical Spine," Journal of Biomechanics, Vol. 39, pp.375-380. https://doi.org/10.1016/j.jbiomech.2004.11.014
  16. Panzer, M.B., Fice, J.B. and Cronin, D.S., 2011, "Cervical Spine Response in Frontal Crash," Medical Engineering & Physics, vol.33, pp.1147-1159. https://doi.org/10.1016/j.medengphy.2011.05.004
  17. Kallemeyna, N., Gandhia, A., Kodea, S., Shivannac, K., Smuckerb, J. and Groslanda, N., 2010, "Validation of a C2-C7 Cervical Spine Finite Element Model using Specimen-Specific Flexibility Data," Medical Engineering & Physics, Vol. 32, pp.482-489. https://doi.org/10.1016/j.medengphy.2010.03.001
  18. Faizan, A., Goel, V.K., Garfin, S.R., Bono, C.M., Serhan, H., Biyani, A., Elgafy, H., Krishna, M. and Friesem, T., 2012, "Do Design Variations in the Artificial Disc Influence Cervical Spine Biomechanics? A Finite Element Investigation," European Spine J., Vol.21, pp.653-662. https://doi.org/10.1007/s00586-009-1211-6
  19. Goel, V.K. and Clausen, J.D., 1998, "Prediction of Load Sharing among Spinal Components of a C5-C6 Motion Segment using the Finite Element Approach," Spine, Vol.23, pp.684-691. https://doi.org/10.1097/00007632-199803150-00008