DOI QR코드

DOI QR Code

노지 및 시설재배 삼채 뿌리 및 잎의 이화학 성분, DPPH 라디칼 소거능 및 Nitric Oxide 생성 억제효과

Chemical Components, DPPH Radical Scavenging Activity and Inhibitory Effects on Nitric Oxide Production in Allium hookeri Cultivated under Open Field and Greenhouse Conditions

  • 원준연 (중부대학교 한방건강관리학과) ;
  • 유영춘 (건양대학교 의과대학 미생물학교실) ;
  • 강은주 (건양대학교 의과대학 미생물학교실) ;
  • 양해 (건양대학교 의과대학 미생물학교실) ;
  • 김관후 (충남농업기술원 금산인삼약초시험장) ;
  • 성봉재 (충남농업기술원 금산인삼약초시험장) ;
  • 김선익 (충남농업기술원 금산인삼약초시험장) ;
  • 한승호 (충남농업기술원 금산인삼약초시험장) ;
  • 이석수 (충남농업기술원 금산인삼약초시험장) ;
  • 이가순 (충남농업기술원 금산인삼약초시험장)
  • Won, Jun-Yeon (Dept. of Oriental Health Care, J oongbu University) ;
  • Yoo, Young-Choon (Dept. of Microbiology, College of Medicine, Konyang University) ;
  • Kang, Eun-Ju (Dept. of Microbiology, College of Medicine, Konyang University) ;
  • Yang, Hye (Dept. of Microbiology, College of Medicine, Konyang University) ;
  • Kim, Gwan-Hou (Geumsan Ginseng & Medicinal Crop Experiment Station, CNARES) ;
  • Seong, Bong-Jae (Geumsan Ginseng & Medicinal Crop Experiment Station, CNARES) ;
  • Kim, Sun-Ick (Geumsan Ginseng & Medicinal Crop Experiment Station, CNARES) ;
  • Han, Seung-Ho (Geumsan Ginseng & Medicinal Crop Experiment Station, CNARES) ;
  • Lee, Sox-Su (Geumsan Ginseng & Medicinal Crop Experiment Station, CNARES) ;
  • Lee, Ka-Soon (Geumsan Ginseng & Medicinal Crop Experiment Station, CNARES)
  • 투고 : 2013.05.03
  • 심사 : 2013.06.13
  • 발행 : 2013.09.30

초록

삼채를 식품으로써 활용도를 높이기 위하여 노지 및 하우스 재배에 의한 삼채의 뿌리 및 잎에 대한 식품학적인 특성을 조사하였다. 삼채의 수분함량은 뿌리에서 81.05~84.18%, 잎에서는 88.85~90.12%이었으며, 가용성 무질소물인 탄수화물군은 뿌리에서 13.49~16.20%, 잎에서는 7.08~7.79%를 함유하고 있었다. 무기질 성분 중 가장 많은 무기질은 노지 및 하우스 재배 모두 K으로 잎에서는 503.98~512.08 mg%를 함유하고 있었다. 노지 재배에 의한 삼채는 뿌리 중 유리당 함량이 잎 부위보다 약 4배 이상 높은 함량이었고, 하우스 재배 삼채는 뿌리보다 잎에서 약 3배 이상 높았다. 특히 fructose의 경우는 하우스 재배 삼채보다 노지 재배 삼채 뿌리가 약 12배 정도 더 높았다. 삼채의 조사포닌 및 총폴리페놀 함량은 뿌리보다 잎에서, 하우스 재배보다 노지 재배 삼채에서 더 많이 함유하고 있었다. 노지 및 하우스 재배 삼채의 뿌리와 잎 부위 추출물에 대한 DPPH radical 소거활성은 70% MeOH 잎 추출물에서 훨씬 소거활성이 높았으며 특히 하우스 재배 삼채 잎의 70% MeOH 추출물은 소거활성이 가장 높아 $IC_{50}$의 값이 2.74 mg/mL이었다. 마우스 대식세포에서의 세포증식에 미치는 영향에서는 하우스 재배 삼채 잎의 물 및 70% 메탄올 추출물 모두 가장 높은 농도인 10배 희석액을 처리하여서도 독성이 없었으며 LPS로 유도처리한 RAW 264.7 대식세포에서 NO의 생성을 억제현상은 70% 메탄올 추출물에서는 노지 및 하우스 재배 모두 농도 의존적으로 NO의 생성을 억제하였다. 특히 노지 재배 삼채 잎에서는 독성이 나타나지 않는 90배 희석액 처리 시에도 NO의 생성을 강하게 저해시켰다.

To enhance the utilization of Allium hookeri (AH) as a food, characteristics of AH roots and leaves cultivated under open field and greenhouse conditions were investigated. The moisture content of the roots and leaves were 81.05 to 84.18% and 88.85 to 90.12%, respectively. The moisture content of AH cultivated in the open field was 2 to 3% lower than the moisture content of AH cultivated in the greenhouse for both roots and leaves. The content of nitrogen-free extract, carbohydrates, was 13.49 to 16.20% in the roots and 7.08 to 7.79% in the leaves. The main mineral generated from both open field and greenhouse cultivation was potassium, at 503.98 to 512.08 mg% in leaves. The free sugar content of roots cultivated in the open field was four times higher than the content in the leaves, and roots cultivated in the greenhouse contained three times lower free sugar than the leaves. In particular, the fructose content of roots cultivated in the open field was about 12 times higher than roots cultivated in the greenhouse. The crude saponin and total polyphenol content was higher in leaves than roots, and was higher in the open field than the greenhouse. The $IC_{50}$ for DPPH radical scavenging activity was highest, 2.74 mg/mL, in 70% MeOH extracts of AH leaves cultivated in the greenhouse. Water and 70% MeOH extracts of AH leaves cultivated in the greenhouse showed no cytotoxicity to RAW 264.7 cells. Water extracts of AH leaves cultivated in the open field markedly inhibited the production of the inflammatory mediator nitric oxide. These results suggest that AH may be used as the material of health functional food.

키워드

참고문헌

  1. Ayam VS. 2011. Allium hookeri, Thw. Enum. A lesser known terrestrial perennial herb used as food and its ethnobotanical relevance in Manipur. Afr J Food Agric Nutr Dev 11: 5389-5412.
  2. http://fse.foodnara.go.kr/origin/search_content_detail.jsp?idx=9585&query=삼채.
  3. Kim CH, Lee MA, Kim TW, Jang JY, Kim HJ. 2012. Antiinflammatory effect of Allium hookeri root methanol extract in LPS-induced RAW264.7 cells. J Korean Soc Food Sci Nutr 41: 1645-1648. https://doi.org/10.3746/jkfn.2012.41.11.1645
  4. Bae GC, Bae DY. 2012. The anti-inflammatory effects of ethanol extract of Allium Hookeri cultivated in South Korea. Kor J Herbology 27: 55-61. https://doi.org/10.6116/kjh.2012.27.6.55
  5. Lee SM, Lee SI. 2013. Seasoning composition with Allium hookeri for manufacturing kimchi, method of preparing the same and kimchi having the same. Korean Patent 1012946540000.
  6. Jeon ES. 2012. Manufacturing method of Allium hookeri jangajji. Korean Patent 1012590370000.
  7. Jeon ES. 2013. Manufacturing method of Allium hookeri powder for meat sauce, meat sauce made from the Allium hookeri powder and seasoned meat made from the meat sauce. Korean Patent 1012226620000.
  8. Kwak YJ, Chun HJ, Kim JS. 1998. Chlorophyll, mineral contents and SOD-like activities of leeks harvested at different times. Korean J Soc Food Sci 14: 513-515.
  9. Hong JH, Lee MH, Kang MC, Hur SH. 2000. Separation and identification of antimicrobial compounds from Korean leek (Allium tuberosum). J Fd Hyg Safety 15: 235-240.
  10. Kim KH, Kim HJ, Byun MW, Yook HS. 2012. Antioxidant and antimicrobial activities of ethanol extract from six vegetables containing different sulfur compounds. J Korean Soc Food Sci Nutr 41: 577-583. https://doi.org/10.3746/jkfn.2012.41.5.577
  11. AOAC. Official methods of analysis. 1995. 16th ed. Association of Official Analytical Chemists, Washington, DC, USA. p 69-74.
  12. Ando T, Tanaka O, Shibata S. 1971. Chemical studies on the oriental plant drugs (XXV). Comparative studies on the saponins and sapogenins of ginseng and related crude drugs. Soyakugaku Zasshi 25: 28-33.
  13. Folin O, Denis W. 1912. On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol Chem 12: 239-243.
  14. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  15. Bredt DS, Snyder SH. 1994. Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem 63: 175-195. https://doi.org/10.1146/annurev.bi.63.070194.001135
  16. Harris SG, Padilla J, Koumas L, Ray D, Phipps RP. 2002. Prostaglandins as modulators of immunity. Trends Immunol 23: 144-150. https://doi.org/10.1016/S1471-4906(01)02154-8
  17. National Rural Living Science Institute. 2011. Food Composition Table 8th Revision. RDA, Suwon, Korea. Vol II, p 152-154.
  18. Nam KY. 1996. The new Korean ginseng (constituent and its pharmacological efficacy). Korea Ginseng & Tabacco Research Institute, Daejeon, Korea. p 13-23.
  19. Ide N, Lau BHS. 2001. Garlic compounds minimize intracellular oxidative stress and inhibit nuclear factor-${\kappa}B$ activation. J Nutr 131: 1020S-1026S.
  20. Kleemann R, Verschuren L, Morrison M, Zadelaar S, van Erk MJ, Wielinga PY, Kooistra T. 2011 Antiinflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. Atherosclerosis 218: 44-52. https://doi.org/10.1016/j.atherosclerosis.2011.04.023
  21. Rivera L, Moron R, Sanchez M, Zarzuelo A, Galisteo M. 2008. Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity (Silver Spring) 16: 2081-2087. https://doi.org/10.1038/oby.2008.315
  22. Nathan C. 1992. Nitric oxide as a secretory product of mammalian cells. FASEB J 6: 3051-3064.

피인용 문헌

  1. Comparison of the Nutrient Composition and Quality of the Root of Allium hookeri Grown in Korea and Myanmar vol.46, pp.5, 2014, https://doi.org/10.9721/KJFST.2014.46.5.544
  2. Total Phenolics, Total Flavonoids, and Antioxidant Capacity in the Leaves, Bulbs, and Roots of Allium hookeri vol.47, pp.2, 2015, https://doi.org/10.9721/KJFST.2015.47.2.261
  3. High-frequency Plant Regeneration from Cultured Flower Bud Receptacles of Allium hookeri L. vol.32, pp.5, 2014, https://doi.org/10.7235/hort.2014.14023
  4. Quality Characteristics of Wet Noodles with Allium hookeri Powder vol.45, pp.1, 2016, https://doi.org/10.3746/jkfn.2016.45.1.084
  5. Physicochemical and antioxidant properties in Allium hookeri by hot air-and freeze-drying methods vol.23, pp.1, 2016, https://doi.org/10.11002/kjfp.2016.23.1.57
  6. Bioactive Components and Volatile Compounds According to Illite Addition in Saururus chinensis Baill Cultivation vol.22, pp.3, 2014, https://doi.org/10.7783/KJMCS.2014.22.3.188
  7. Quality Characteristics of Seasoned Pork with Water Extracts of Allium hookeri Root during Storage vol.44, pp.2, 2015, https://doi.org/10.3746/jkfn.2015.44.2.242
  8. Antioxidant and anti-inflammatory properties of extracts from Allium hookeri root vol.22, pp.6, 2015, https://doi.org/10.11002/kjfp.2015.22.6.867
  9. Physiological Activities of Ethanol Extracts from Different Parts of Allium hookeri vol.28, pp.2, 2015, https://doi.org/10.9799/ksfan.2015.28.2.295
  10. The Hypolipidemic Effect of Allium Hookeri in Rats Fed with a High Fat Diet vol.27, pp.1, 2016, https://doi.org/10.7856/kjcls.2016.27.1.137
  11. Antioxidant Activity of Allium hookeri Root Extract and Its Effect on Lipid Stability of Sulfur-fed Pork Patties vol.35, pp.1, 2015, https://doi.org/10.5851/kosfa.2015.35.1.41
  12. Effect of Allium hookeri Root on Plasma Blood Glucose and Fat Profile Levels in Streptozotocin-Induced Diabetic Rats vol.26, pp.6, 2016, https://doi.org/10.17495/easdl.2016.12.26.6.481
  13. Evaluation of antioxidant, α-glucosidase inhibition and acetylcholinesteraseinhibition activities of Allium hookeri root grown in Korea and Myanmar vol.23, pp.2, 2016, https://doi.org/10.11002/kjfp.2016.23.2.239
  14. Protective Effects of Ethanol Extract of Allium hookeri Root on Acute Alcohol-Induced Intoxication in ICR Mice vol.45, pp.5, 2016, https://doi.org/10.3746/jkfn.2016.45.5.625
  15. Physicochemical Properties and Antioxidant Activities of Steam-Dried Allium hookeri Root vol.44, pp.3, 2015, https://doi.org/10.3746/jkfn.2015.44.3.412
  16. Hepatoprotective potential of aqueous extract of Allium eriophyllum Boiss in high-fat diet-induced fatty liver diseases pp.1618-565X, 2018, https://doi.org/10.1007/s00580-018-2853-8
  17. Effect of aqueous extract of Allium saralicum R.M. Fritsch on fatty liver induced by high-fat diet in Wistar rats pp.1618-565X, 2019, https://doi.org/10.1007/s00580-018-2834-y
  18. extract vol.34, pp.2, 2018, https://doi.org/10.5625/lar.2018.34.2.75
  19. 중부지역 뿌리부추 하우스 재배 시 차광 정도가 생육 및 수량에 미치는 영향 vol.25, pp.4, 2013, https://doi.org/10.12791/ksbec.2016.25.4.320
  20. The effects of Allium hookeri on the physicochemical characteristics and storage of pork sausage vol.26, pp.5, 2013, https://doi.org/10.11002/kjfp.2019.26.5.466
  21. Safety and Physicochemical Activities of Allium Hookeri vol.17, pp.4, 2013, https://doi.org/10.20402/ajbc.2019.0332
  22. 향부추 에탄올 추출물의 항산화 활성 및 항염증 효과 vol.10, pp.7, 2013, https://doi.org/10.22156/cs4smb.2020.10.07.232
  23. 삼채에 발생하는 점박이응애에 대한 10종의 살비제 감수성 평가 vol.59, pp.4, 2013, https://doi.org/10.5656/ksae.2020.11.0.073