DOI QR코드

DOI QR Code

Anti-atopic Effects of Castanea crenata Inner Shell Extracts Fermented by Lactobacillus bifermentans

Lactobacillus bifermentans로 발효한 율피의 항아토피 효과

  • 김배진 ((재)대구테크노파크 바이오헬스융합센터) ;
  • 손우림 ((재)대구테크노파크 바이오헬스융합센터) ;
  • 최미옥 ((재)대구테크노파크 바이오헬스융합센터) ;
  • 조성경 ((재)대구테크노파크 바이오헬스융합센터) ;
  • 정희경 ((재)대구테크노파크 바이오헬스융합센터) ;
  • 이진태 (대구한의대학교 화장품약리학과) ;
  • 김학윤 (계명대학교 환경생물학과) ;
  • 권대준 ((재)대구테크노파크 바이오헬스융합센터)
  • Received : 2013.03.06
  • Accepted : 2013.08.21
  • Published : 2013.09.30

Abstract

Atopic dermatitis (AD) is a common skin disease characterized by chronic and relapsing inflammatory dermatitis with immunological disturbances. In spite of the continuous increase in the incidence of AD, it is regrettable that till date there is no effective treatment to treat the same. Therefore, the present study was designed to examine the possible anti-atopic effects of Castanea crenata inner shell extracts fermented by Lactobacillus bifermentans (FCS) in 2,4-dinitrochlorobenzene (DNCB) induced AD in NC/Nga mice. Based on the results of HPLC analysis, we found that FCS contains anti-inflammatory factors such as gallic acid (10.18 mg/g) and ellagic acid (2.14 mg/g). The groups that we have used in this study included 0.1%, 1%, 5% fermented Castanea crenata inner shell extracts (FCS 0.1, FCS 1, FCS 5), 1,3-butylene glycol treated control (AD), and normal mice. After topical FCS treatment, we observed that the clinical severity score for AD was lower in both the FCS 1 and FCS 5 groups than the AD group. We also proved beyond doubt that there was improvement of melanin, erythema and skin moisture indices in the FCS 5 group. Spleen index and gene expression levels of pro-inflammatory cytokines such as IL-$1{\beta}$ and TNF-${\alpha}$ were significantly decreased in the FCS 5 group compared to the AD group (P<0.05). Further, we also found that the level of serum immunoglobulin E (IgE) in the FCS-treated group was decreased in a concentration-dependent manner. The results of our study suggest that FCS can be effectively used as a cosmeceutical ingredient for both the prevention and improvement of AD.

본 연구에서는 DNCB 도포를 통해 아토피 피부염을 유발시킨 NC/Nga mice에 율피 발효물을 각각 0.1%, 1%, 5%로 도포하고 항아토피 효능을 평가하였다. 율피 발효물의 유효성분은 HPLC 분석 결과, gallic acid와 ellagic acid가 각각 10.18 mg/g, 2.14 mg/g 함량을 나타내었다. 실험군 간의 유의적 체중 변화는 관찰되지 않았으며, 육안 평가를 통해 홍반, 가려움과 피부건조, 부종과 혈종, 짓무름 그리고 태선화와 같은 일반적인 아토피 피부염 증상의 심각도를 측정한 점수 결과에서는 DNCB 도포를 통해 아토피 피부염을 유발한 atopic dermatitis(AD)군($13.17{\pm}0.40$)과 비교 시, 아토피 피부염 유발 후 5% 율피 발효물을 도포한 fermented Castanea crenata inner shell(FCS) 5군에서 $7.50{\pm}0.43$ 으로 나타나 아토피 피부염 증상이 빠르게 개선되는 것을 확인하였다(P<0.01). 피부 측정 기기인 MPA5 580을 이용하여 피부멜라닌지수, 피부홍반지수, 피부수분지수를 측정한 결과, AD군은 각각 $296.61{\pm}8.11$, $264.33{\pm}10.15$, $3.15{\pm}0.54$를 나타내었으며 FCS 5군은 각각 $105.86{\pm}2.92$, $199.56{\pm}4.22$, $17.62{\pm}1.75$로 개선효과가 유의적으로 나타났다(P<0.05). 각 실험군 mice의 면역반응을 확인하기 위해 비장 무게(mg)를 체중(g)으로 나누어 산출한 비장 수치의 경우, 아토피 피부염 유발로 인해 AD군에서 증가된 비장 수치($5.55{\pm}0.31$)가 FCS 0.1군, FCS 1군, FCS 5군에서는 각각 $4.53{\pm}0.24$, $3.80{\pm}0.40$, $3.32{\pm}0.24$로 나타나 율피 발효물의 도포 농도에 의존적으로 감소되는 경향을 나타냈으며 특히 FCS 5군에서는 유의적으로 낮게 나타났다(P<0.05). 이는 율피 발효물이 아토피 피부염 상태에서 증가된 비장 내 T-림프구를 효과적으로 억제할 수 있음을 나타낸다. Quantitative real-time PCR을 통해 피부조직에서 IL-$1{\beta}$, TNF-${\alpha}$와 같은 염증 유전자의 발현 변화를 분석한 결과, 두 유전자 모두 정상군의 relative quantification값이 1일 때 AD군은 각각 1.30, 1.26으로 증가되었으며 FCS 5군에서는 1.11, 0.93으로 나타나 율피 발효물 도포에 의한 유의적인 감소(P<0.05)를 확인할 수 있었다. 아토피 피부염의 면역학적 지표인 혈청 내 IgE 함량을 분석한 결과에서는 각 실험군 간의 유의적 차이는 보이지 않았으나 AD군($1,628.71{\pm}202.59ng/mL$)과 비교 시, 율피 발효물을 도포한 FCS 0.1군, FCS 1군, FCS 5군에서 각각 $1,530.15{\pm}198.70ng/mL$, $1,462.15{\pm}83.79ng/mL$, $1,187.47{\pm}140.09ng/mL$로 나타나 율피 발효물 도포에 의해 감소되는 경향을 확인할 수 있었다. 따라서 율피 발효물은 아토피 피부염 증상 개선을 위한 기능성 천연물의 소재로 활용될 수 있을 것이라 생각된다.

Keywords

References

  1. Spergel JM, Paller AS. 2003. Atopic dermatitis and the atopic march. J Allergy Clin Immunol 112: S118-S127. https://doi.org/10.1016/j.jaci.2003.09.033
  2. Abramovits W. 2005. Atopic dermatitis. J Am Acad Dermatol 53: S86-S93. https://doi.org/10.1016/j.jaad.2005.04.034
  3. Yamashita H, Makino T, Mizukami H, Nose M. 2007. Pharmacological characterization of a chronic pruritus model induced by multiple application of 2,4,6-trinitrochlorobenzene in NC mice. Eur J Pharmacol 563: 233-239. https://doi.org/10.1016/j.ejphar.2007.01.078
  4. Leung DY, Soter NA. 2001. Cellular and immunologic mechanisms in atopic dermatitis. J Am Acad Dermatol 44:S1-S12. https://doi.org/10.1067/mjd.2001.109302
  5. McGrath JA. 2008. Filaggrin and the great epidermal barrier grief. Australas J Dermatol 49: 67-73. https://doi.org/10.1111/j.1440-0960.2008.00443.x
  6. Kang DG, Park CW, Lee CH. 1992. A study of peripheral blood eosinophil and serum IgE level in patients with atopic dermatotis. Korean J Dermatol 30: 51-56.
  7. Lee YH. 2007. Effect of Phellinus Liteus grown in germinated brown rice on atopic dermatitis. J Kor Soc Cosm 13:514-519.
  8. Vercelli D. 2001. Immunoglobulin E and its regulators. Curr Opin Allergy Clin Immunol 1: 61-65. https://doi.org/10.1097/00130832-200102000-00011
  9. Sator PG, Schmidt JB, Honigsmann H. 2003. Comparison of epidermal hydration and skin surface lipids in healthy individuals and in patients with atopic dermatitis. J Am Acad Dermatol 48: 352-358. https://doi.org/10.1067/mjd.2003.105
  10. Sidbury R, Hanifin JM. 2000. Old, new, and emerging therapies for atopic dermatitis. Dermatol Clin 18: 1-11.
  11. Schreiber SL, Crabtree GR. 1992. The mechanism of action of cyclosporin A and FK506. Immunol Today 13: 136-142. https://doi.org/10.1016/0167-5699(92)90111-J
  12. Joo YH, Won CH, Kim JY, Cho KH, Min KU, Kim KH. 2009. Developing an atopic dermatitis model and the effects of actinidia extract on dermatitis in NC/Nga mice. Korean J Dermatol 47: 1105-1112.
  13. Choi MJ, Jung HK, Jeong YS, Park SC, Hong JH. 2010. Anti-allergic activities of fermented Eriobotrya japonica and Saurus chinensis extracts in 2,4-dinitrochlorobezen-induced BALB/c mice. J Korean Soc Food Sci Nutr 39: 1611-1618. https://doi.org/10.3746/jkfn.2010.39.11.1611
  14. Cho SE. 2012. A study on the immunomodulatory effects of Chamaecyparis Obtusa leaves on NC/Nga mice as models for atopic dermatitis. J Kor Soc Cosm 18: 78-89.
  15. Yoon WJ. 1997. The study on the humidity preserving effect with several natural packs. MS Thesis. Dongduk Women's University, Seoul, Korea.
  16. Yang MJ, Lim SJ, Ahn HS, Kim MA, Ahn RM. 1999. Inhibitory effects of chestnut bark extracts on tyrosinase activity and melanin biosynthesis. Kor J Env Hlth Soc 25: 37-43.
  17. Hubert J, Berger M, Nepveu F, Paul F, Dayd J. 2008. Effects of fermentation on the phytochemical composition and antioxidant properties of soy germ. Food Chem 109:709-721. https://doi.org/10.1016/j.foodchem.2007.12.081
  18. Han SK. 2005. Quality improvement of effective microorganisms (EM) pork produced by using EM. J Korean Soc Food Sci Nutr 34: 734-737. https://doi.org/10.3746/jkfn.2005.34.5.734
  19. Suto H, Matsuda H, Mitsuishi K, Hira K, Uchida T, Unno T, Ogawa H, Ra C. 1999. NC/Nga mice: a mouse model for atopic dermatitis. Int Arch Allergy Immunol 120: 70-75. https://doi.org/10.1159/000053599
  20. Kim BA, Kim MS, Kang BM, Byeon SH, Park IH, Park JH, Jung JW, Ahn EM, Jung HA, Jang JH, Bae W, Lee HY, Choi PN, Park CI. 2008. Inhibitory studies of Hwangryunhaedok- tang on development of atopic dermatitis in NC/Nga mice. Kor J Herbology 23: 59-65.
  21. Yamaguchi T, Maekawa T, Nishikawa Y, Nojima H, Kaneko M, Kawakita T, Miyamoto T, Kuraishi Y. 2001. Characterization of itch-associated responses of NC mice with mite-induced chronic dermatitis. J Dermatol Sci 25: 20-28. https://doi.org/10.1016/S0923-1811(00)00099-2
  22. Leung DY, Hirsch RL, Schneider L, Moody C, Takaoka R, Li SH, Meyerson LA, Mariam SG, Goldstein G, Hanifin JM. 1990. Thymopentin therapy reduces the clinical severity of atopic dermatitis. J Allergy Clin Immunol 85: 927-933. https://doi.org/10.1016/0091-6749(90)90079-J
  23. Kwon TK, Lim KB, Kim JC. 2011. The effect of anti-atopic cosmetic in hairless mice. Appl Chem Eng 22: 91-97.
  24. Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3: 1101-1108. https://doi.org/10.1038/nprot.2008.73
  25. Kwon KH, Murakami A, Ohigashi H. 2004. Suppressive effects of natural and synthetic agents on dextran sulfate sodium- induced interleukin-1β release from murine peritoneal macrophages. Biosci Biotechnol Biochem 68: 436-439. https://doi.org/10.1271/bbb.68.436
  26. Matsuo N, Yamada K, Shoji K, Mori M, Sugano M. 1997. Effect of tea polyphenols on histamine release from rat basophilic leukemia (RBL-2H3) cells: the structure-inhibitory activity relationship. Allergy 52: 58-64.
  27. Choi YH, Yan GH. 2009. Ellagic acid attenuates immunoglobulin E-mediated allergic response in mast cells. Biol Pharm Bull 32: 1118-1121. https://doi.org/10.1248/bpb.32.1118
  28. Kim SB, Kang BH, Kwon HS, Kang JH. 2011. Antiinflammatory and antiallergic activity of fermented turmeric by Lactobacillus johnsonii IDCC 9203. Korean J Microbiol Biotechnol 39: 266-273.
  29. Jeon BG, Park CK. 2000. A study on the production of chestnut powder in the inner shell (endo carp) of a chestnut from its treatment plant-Study on the utilities of separated powder from chestunt inner shell). J Kowrec 8: 111-120.
  30. Aeom YD, Shin MK, Lee YM, Kim HM, Shin TY, Jeong JG, Song HJ. 2000. Anaphylactic reaction inhibitory effect of Fructus Chebula. Kor J Herbology 15: 123-128.
  31. Gonzalez-Rey E, Chorny A, Delgado M. 2007. Regulation of immune tolerance by anti-inflammatory neuropeptides. Nat Rev Immunol 7: 52-63. https://doi.org/10.1038/nri1984
  32. Kim YB, Yoon HS, Park OS, Kim HJ, Kim KS. 2005. Effects of Chogam-Tang on rat skin induced the allergic contact dermatitis. J Korean Orient Med Ophthalmol Otolaryngol Dermatol 18: 44-54.
  33. Renz H, Mutius E, Illi S, Wolkers F, Hirsch T, Weiland SK. 2002. T(H)1/T(H)2 immune response profiles differ between atopic children in eastern and western Germany. J Allergy Clin Immunol 109: 338-342. https://doi.org/10.1067/mai.2002.121459
  34. Heo Y, Lee WT, Lawrence DA. 1998. Differential effects of lead and cAMP on development and activities of Th1- and Th2-lymphocytes. Toxicolo Sci 43: 172-185.
  35. Jyonouchi H, Sun S, Tomita Y, Gross MD. 1995. Astaxanthin, a carotenoid without vitamin A activity, augments antibody responses in cultures including T-helper cell clones and suboptimal doses of antigen. J Nutr 125: 2483-2492.
  36. He J, Wang T, Yao L, Chen A, Zhou B, Yu H, Jia R, Cheng C, Huan L, Zhang Z. 2006. Construction and delivery of gene therapy vector containing soluble TNFα receptor- IgGFc fusion gene for the treatment of allergic rhinitis. Cytokine 36: 296-304. https://doi.org/10.1016/j.cyto.2007.02.010
  37. Baeuerle PA. 1991. The inducible transcription activator NF-${\kappa}B$: regulation by distinct protein subunits. Biochim Biophys Acta 1072: 63-80.
  38. Spergel JM, Mizoguchi E, Oettgen H, Bhan AK, Geha RS. 1999. Roles of TH1 and TH2 cytokines in a murine model of allergic dermatitis. J Clin Invest 103: 1103-1111. https://doi.org/10.1172/JCI5669
  39. Chen L, Martinez O, Overbergh L, Mathieu C, Prabhakar BS, Chan LS. 2004. Early up-regulation of Th2 cytokines and late surge of Th1 cytokines in an atopic dermatitis model. Clin Exp Immunol 138: 375-387. https://doi.org/10.1111/j.1365-2249.2004.02649.x
  40. Jang SN, Kim KR, Yun MY, Kang SM. 2009. The effect of ${\gamma}$-PGA on NC/Nga mice, a mouse model for mite antigen-induced atopic dermatitis. Kor J Microbiol Biotechnol 37: 53-63.
  41. Ju JH, Cho HH, Lee YS. 2010. Progress on phytochemical and atopic dermatitis-related study of the root of Lithospermum erythrorhizon. Kor J Pharmacogn 41: 73-88.
  42. Song EJ, Lee CJ, Kim KBWR, Jung JY, Kwak JH, Choi MK, Kim MJ, Ahn DH. 2010. Effect of Ecklonia cava water extracts on inhibition of IgE in food allergy mouse model. J Korean Soc Food Sci Nutr 39: 1776-1782. https://doi.org/10.3746/jkfn.2010.39.12.1776

Cited by

  1. Anti-allergic Effect of Ethanolic Extract of Flos Sophora japonica L. on Ca++Ionophore Stimulated Murine RBL-2H3 Cells vol.43, pp.3, 2014, https://doi.org/10.3746/jkfn.2014.43.3.349
  2. Anti-atopic Effect of Hot Water and Supercritical Carbon Dioxide Fluid Extract of Persimmon (Diospyros kaki) Peels vol.47, pp.3, 2015, https://doi.org/10.9721/KJFST.2015.47.3.394
  3. 장수풍뎅이 유충 열수 추출물에 의한 항알레르기와 항염증 효과 vol.27, pp.10, 2013, https://doi.org/10.5352/jls.2017.27.10.1130
  4. Anti-inflammatory effects of Dendropanax morbifera in lipopolysaccharide-stimulated RAW264.7 macrophages and in an animal model of atopic dermatitis vol.19, pp.3, 2019, https://doi.org/10.3892/mmr.2019.9887
  5. 아토피 피부염에서 프로바이오틱스 치료 유효성에 관한 문헌적 고찰 vol.33, pp.1, 2013, https://doi.org/10.6114/jkood.2020.33.1.025