DOI QR코드

DOI QR Code

Method Validation for the Determination of Eleutherosides and β-Glucan in Acanthopanax koreanum

탐라오가피의 Eleutheroside B, E 및 β-Glucan 함량 분석 및 분석법 검증

  • 김영현 (강원대학교 식품생명공학과) ;
  • 배다빈 (강원대학교 식품생명공학과) ;
  • 박선옥 ((주)에스티알바이오텍) ;
  • 이상종 ((주)에스티알바이오텍) ;
  • 조옥현 (메사추세츠 주립대학교 의학대학) ;
  • 이옥환 (강원대학교 식품생명공학과)
  • Received : 2013.04.29
  • Accepted : 2013.07.31
  • Published : 2013.09.30

Abstract

The aim of this study was to investigate the method validation for the determination of eleutherosides (B and E) and ${\beta}$-glucan in Acanthopanax (A.) koreanum. This medicinal plant reportedly mainly included eleutherosides which exhibit the pharmacological effects, and ${\beta}$-glucan substantially enhances the function of the immune system by activating macrophages. The specificity, linearity, precision, accuracy, limit of detection (LOD, S/N=3), and limit of quantification (LOQ, S/N=10) were measured by HPLC and enzymatic methods. Our results showed that the coefficient of calibration correlation ($R^2$) for eleutheroside B and E were 0.9997 and 0.9999, respectively. The limits of detection (LOD) for eleutheroside B and E were $0.050{\mu}g/mL$ and $0.025{\mu}g/mL$, respectively. The recovery rate of eleutheroside B and E were revealed in the high range of 100.66~110.04% and 94.26~111.62%, respectively. The inter-day precision of eleutheroside B and E in the root and stem in A. koreanum were 1.4~5.0% and 1.1~2.5%, respectively. The intra-day precision of eleutheroside B and E in the root and stem in A. koreanum were 2.8~2.9% and 0.4~1.1%, respectively. Furthermore, the inter-day and intra-day precision of ${\beta}$-glucan in the stem, leaf, and fruit of A. koreanum were 1.32~5.67% and 8.01~11.76%, respectively. In conclusion, the methods were validated for the detection of eleutherosides and ${\beta}$-glucan in A. koreanum.

탐라오가피를 이용하여 건강기능식품 개발 시 원료의 표준화를 위한 eleutheroside B, E 및 ${\beta}$-glucan의 함량 및 분석법 검증을 실시하였다. 분석법 검증결과, HPLC를 이용한 분석방법에서 표준용액의 피크유지시간과 탐라오가피 뿌리 및 줄기 추출물의 피크유지시간이 일치하였으며 동일한 spectrum을 나타내는 것으로 특이성을 확인하였다. Eleutheroside B와 E의 검량선은 각각 0.9997, 0.9999로 1에 가까운 높은 직선성을 보여주어 분석에 적합함을 알 수 있었다. Eleutheroside B와 E의 검출한계는 각각 $0.050{\mu}g/mL$, $0.025{\mu}g/mL$이었고 정량한계는 $0.250{\mu}g/mL$로 eleutheroside B와 E가 동일한 값으로 설정되었다. Eleutheroside B의 함량은 탐라오가피 뿌리 및 줄기에서 각각 $525.7{\pm}16.8$, $525.1{\pm}21.1{\mu}g/g$으로 큰 차이가 없었으며 eleutheroside E의 함량은 뿌리 및 줄기에서 각각 $1,315.3{\pm}22.7$, $1,037.5{\pm}22.2{\mu}g/g$으로 뿌리에 더 많은 eleutheroside E가 함유되어 있었다. 정밀도(RSD) 측정 결과, eleutheroside B와 E는 일간 정밀도에서 각각 1.4~5.0, 1.1~2.5%의 정밀도를 보여주었으며 일내 정밀도에서는 각각 2.8~2.9, 0.4~1.1%로 일간 정밀도보다 높은 정밀성을 나타내었다. 또한 eleutheroside B는 100.66~110.04%, eleutheroside E는 94.26~111.62% 범위의 회수율을 보여주어 실험방법에 대한 정확성을 검증하였다. ${\beta}$-Glucan 분석법 검증 결과, 100.03%의 회수율을 보였으며 분석오차는 2.33%로 높은 정확도를 보여주었고, 일간(inter-day) 정밀도는 1.32~5.67%이었으며 일내(intra-day) 정밀도는 8.01~11.76%의 정밀성을 나타내었다. 탐라오가피 줄기, 잎 및 열매의 ${\beta}$-glucan 함량은 각각 $5.32{\pm}0.38$, $4.34{\pm}0.32$, $3.71{\pm}0.22%$(w/w)로 줄기에 가장 많은 ${\beta}$-glucan이 함유되어 있는 것으로 확인되었다. 본 연구 결과, 지표성분인 eleutheroside B와 E의 HPLC를 이용한 동시분석 방법과 ${\beta}$-glucan 분석방법이 적합한 분석방법임이 검증되었다.

Keywords

References

  1. Lee YS, Jung SH, Lim SS, Ji J, Lee SH, Shin KH. 2001. Effects of the water extract from the stem bark of Acanthopanax senticosus on hyperlipidemia in rats. Kor J Pharmacogn 32: 103-107.
  2. Douling EA, Redondo DR, Branch JD, Jones S, McNabb G, Williams MH. 1996. Effect of Eleutherococcus senticosus on submaximal and maximal exercise performance. Med Sci Sports Exerc 28: 482-489. https://doi.org/10.1097/00005768-199604000-00013
  3. Huang LZ, Huang BK, Ye Q, Qin LP. 2011. Bioactivityguided fractionation for anti-fatigue property of Acanthopanax senticosus. J Ethnopharmacol 133: 213-219. https://doi.org/10.1016/j.jep.2010.09.032
  4. Hacker B, Medon PJ. 1984. Cytotoxic effects of Eleutherococcus senticosus aqueous extracts in combination with N6-(delta 2-isopentenyl)-adenosine and 1-beta-D-arabinofuranosylcytosine against L1210 leukemia cells. J Pharm Sci 73: 270-272. https://doi.org/10.1002/jps.2600730235
  5. Hibasami H, Fujikawa T, Takeda H, Nishibe S, Satoh T, Fujisawa T, Nakashima K. 2000. Induction of apoptosis by Acanthopanax senticosus HARMS and its component, sesamin in human stomach cancer KATO Ⅲ cells. Oncol Rep 7: 1213-1216.
  6. Ko SK, Kim JS, Choi YE, Lee SJ, Park KS, Chung SH. 2002. Anti-diabetic effects of mixed water extract from ginseng radix rubra, acanthopanacis cortex, and cordyceps. Kor J Pharmacogn 33: 337-342.
  7. Kim SD, Lee SI, Shin KO. 2005. Effect of Acanthopanax senticosus extracts on blood sugar and serum lipid profiles of streptozotocin-induced diabetic rats. J East Asian Soc Dietary Life 15: 547-557.
  8. Lim SY, Leem JY, Lee CS, Jang YJ, Park JW, Yoon S. 2007. Antioxidant and cell proliferation effects of Acanthopanax senticosus extract in human osteoblast-like MG-63 cell line. Korean J Food Sci Technol 39: 694-700.
  9. Park KJ, Park SH, Kim JK. 2010. Anti-wrinkle activity of Acanthopanax senticosus extract in ultraviolet B (UVB)-induced photoaging. J Korean Soc Food Sci Nutr 39: 42-46. https://doi.org/10.3746/jkfn.2010.39.1.042
  10. Lu F, Sun Q, Bai Y, Bao S, Li X, Yan G, Liu S. 2012. Characterization of eleutheroside B metabolites derived from an extract of Acanthopanax senticosus Harms by highresolution liquid chromatography/quadrupole time-of-flight mass spectrometry and automated data analysis. Biomed Chromatogr 26: 1269-1275. https://doi.org/10.1002/bmc.2688
  11. Yang YT, Lim JH, Kim JH, Ko KS, Ko JS. 2008. Changes in major constituents by extracting of Acanthopanax koreanum root with water and ethanol solution. Korean J Food Preserv 15: 421-426.
  12. Brekhman II, Dardymov IV. 1969. New substances of plant origin which increase nonspecific resistance. Annu Rev Pharmacol 9: 419-430. https://doi.org/10.1146/annurev.pa.09.040169.002223
  13. Baranov AI. 1982. Medicinal uses of ginseng and related plants in the Soviet Union: recent trends in the Soviet literature. J Ethnopharmacol 6: 339-353. https://doi.org/10.1016/0378-8741(82)90055-1
  14. KFDA. 2012. The Regulation on Approval of Functional Ingredients for Health Functional Food. Korea Food & Drug Administration, Osong, Korea. p 1-109.
  15. Mcclear BV, Glennie-Holmes M. 1985. Enzymatic quantification of (1$\rightarrow$3), (1$\rightarrow$4)-${\beta}$-D-glucan in barley and malt. J Inst Brew 91: 285-295. https://doi.org/10.1002/j.2050-0416.1985.tb04345.x
  16. Lee SH, Kang SS, Cho SH, Ryu SN, Lee BJ. 2005. Determination of eleutheroside B and E in various parts of Acanthopanax species. Kor J Pharmacogn 36: 70-74.
  17. Choi JM, Kim KY, Lee SH, Ahn JB. 2010. Manufacturing and characteristics of fruit wine from Acanthapanax sessiliflorus. Food Eng Prog 14: 1-6.
  18. KFDA. 2012. Analytical method guideline about validation of drugs and etc. Korea Food & Drug Administration, Osong, Korea. p 1-26.
  19. Feng Sl, Hu Fd, Zhao JX, Liu X, Li Y. 2006. Determination of eleutheroside E and eleutheroside B in rat plasma and tissue by high-performance liquid chromatography using solid-phase extraction and photodiode array detection. Eur J Pharm Biopharm 62: 315-320. https://doi.org/10.1016/j.ejpb.2005.09.007
  20. Lim JH, Yang YT, Koh JS. 2007. Extraction of major constituents from Acanthopanax koreanum stems with water and ethanol solutions. Korean J Food Preserv 14: 67-72.
  21. Park NY, Jeong YJ. 2006. Quality properties of oak mushroom (Lentinus edodes) based on extraction conditions and enzyme treatment. J Korean Soc Food Sci Nutr 35: 1273-1279. https://doi.org/10.3746/jkfn.2006.35.9.1273
  22. Kang JS, Linh PT, Cai XF, Kim HS, Lee JJ, Kim YH. 2001. Quantitative determination of eleutheroside B and E from Acanthopanax species by high performance liquid chromatography. Arch Pharm Res 24: 407-411. https://doi.org/10.1007/BF02975184
  23. Rhee SJ, Cho SY, Kim KM, Cha DS, Park HJ. 2008. A comparative study of analytical methods for alkali-soluble ${\beta}$-glucan in medicinal mushroom, Chaga (Inonotus obliquus). LWT-Food Sci Technol 41: 545-549. https://doi.org/10.1016/j.lwt.2007.03.028

Cited by

  1. Assessment of Validation Method for Bioactive Contents of Fermented Soybean Extracts by Bioconversion and Their Antioxidant Activities vol.45, pp.5, 2016, https://doi.org/10.3746/jkfn.2016.45.5.680
  2. Acute and subchronic (13-week) toxicity of fermented Acanthopanax koreanum extracts in Sprague Dawley rats vol.77, 2016, https://doi.org/10.1016/j.yrtph.2016.02.017
  3. Stability of Ethanolic Extract from Cirsium setidens Nakai vol.31, pp.4, 2016, https://doi.org/10.13103/JFHS.2016.31.4.304
  4. Development and Validation of Analytical Method for Pectolinarin and Pectolinarigenin in Fermented Cirsium setidens Nakai by Bioconversion vol.44, pp.10, 2015, https://doi.org/10.3746/jkfn.2015.44.10.1504
  5. Analysis of Pectolinarin Content and Antioxidant activity in Cirsium setidens Nakai by Cultivars vol.31, pp.3, 2016, https://doi.org/10.13103/JFHS.2016.31.3.210
  6. Determination of Eleutherosides and β-Glucan Content from Different Parts and Cultivating Areas of A. senticosus and A. koreanum vol.42, pp.12, 2013, https://doi.org/10.3746/jkfn.2013.42.12.2082
  7. Eleutherosides Extraction from Acanthopanax sessiliflorus Seeman and Eleutherococcus senticosus Maxim Using an Enzymatic Process vol.45, pp.9, 2016, https://doi.org/10.3746/jkfn.2016.45.9.1273
  8. Genotoxicity Study from the Extracts of Fermented Acanthopanax koreanum vol.31, pp.2, 2016, https://doi.org/10.13103/JFHS.2016.31.2.107
  9. Development and Validation of Analytical Method for Wogonin, Quercetin, and Quercetin-3-O-glucuronide in Extracts of Nelumbo nucifera, Morus alba L., and Raphanus sativus Mixture vol.33, pp.4, 2018, https://doi.org/10.13103/JFHS.2018.33.4.289
  10. 저장조건에 따른 생물전환 발효고려엉겅퀴 주정추출물의 안정성 조사 vol.30, pp.2, 2013, https://doi.org/10.9799/ksfan.2017.30.2.388
  11. Nitrite scavenging activity and anti-inflammatory effects of standardized Cirsium setidens extract vol.26, pp.3, 2019, https://doi.org/10.11002/kjfp.2019.26.3.343