DOI QR코드

DOI QR Code

Immunomodulatory Activities of Apple Seed Extracts on Macrophage

사과씨 에탄올 추출물의 대식세포 면역 조절 활성

  • 변명우 (우송대학교 외식조리영양학부)
  • Received : 2013.07.02
  • Accepted : 2013.08.06
  • Published : 2013.09.30

Abstract

This study examined the immunomodulatory activities of apple seed extracts (ASE). The immunomodulatory effects were estimated through nitric oxide production, cytokine induction, protein expression of inducible nitric oxide synthase (iNOS), and the phosphylation of mitogen-activated protein kinases (MAPKs) and inhibitory kappa $B{\alpha}$ ($I{\kappa}B-{\alpha}$) in the RAW 264.7 macrophage cell line. In the cytotoxicity asay, ASE (31 to $250{\mu}g/mL$) did not induce cytotoxicity; thus, the optimal concentration of ASE was confirmed to be less than $250{\mu}g/mL$. Nitric oxide (NO) and cytokines (tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-6) production significantly increased in a dose-dependent manner. Similarly, the protein expression of iNOS and the phosphorylation of MAPKs and $I{\kappa}B-{\alpha}$ were also increased by ASE treatment. Overall, our results suggest that extracts from apple seeds potentially have immunomodulatory activities on macrophages.

본 연구는 사과씨로부터 추출한 사과씨 에탄올 추출물이 1차 면역세포인 대식세포의 면역기능에 관하여 면역기능을 증가시켜 줄 수 있는 지에 관한 여부를 알아보기 위하여 수행되었다. 사과씨 추출물을 마우스 유래의 대식세포인 RAW 264.7 세포에 처리하였을 때, 대식세포의 활성화 관련 지표인 nitric oxide와 cytokine(IL-6, TNF-${\alpha}$)의 생성이 증가되었다. 이러한 결과는 사과씨 추출물이 대식세포의 활성에 크게 영향을 줄 수 있다는 가능성을 제시하고, 이러한 사과씨 추출물이 대식세포의 면역 활성을 유도하는 신호전달 과정에 관하여 연구해 본 결과, 사과씨 추출물의 처리는 대식세포 내 MAPKs(ERK, p38) 및 $I{\kappa}B-{\alpha}$의 인산화를 증가시키는 신호전달 과정을 경유하는 것으로 관찰되었다.

Keywords

References

  1. Rimm EB, Ascherio A, Giovannucci E, Spiegelman D, Stampfer MJ, Willett WC. 1996. Vegetable, fruit, and cereal fiber intake and risk of coronary heart disease among men. JAMA 275: 447-451. https://doi.org/10.1001/jama.1996.03530300031036
  2. WHO. 2009. Cardiovascular diseases (CVDs). Fact sheet N 317.
  3. Liu YJ. 2001. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 106: 259-262. https://doi.org/10.1016/S0092-8674(01)00456-1
  4. Salazar-Mather TP, Hokeness KL. 2003. Calling in the troops: regulation of inflammatory cell trafficking through innate cytokine/chemokine networks. Viral Immuno 16: 291-306. https://doi.org/10.1089/088282403322396109
  5. Belardelli F. 1995. Role of interferons and other cytokines in the regulation of the immune response. Apmis 103: 161-179. https://doi.org/10.1111/j.1699-0463.1995.tb01092.x
  6. Scalbert A, Manach C, Morand C, Remesy C, Jimenez L. 2005. Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 45: 287-306. https://doi.org/10.1080/1040869059096
  7. Widlansky ME, Gokce N, Keaney JF Jr, Vita JA. 2003. The clinical implications of endothelial dysfunction. J Am Coll Cardiol 42: 1149-1160. https://doi.org/10.1016/S0735-1097(03)00994-X
  8. Nakachi K, Matsuyama S, Miyake S, Suganuma M, Imai K. 2000. Preventive effects of drinking green tea on cancer and cardiovascular disease: epidemiological evidence for multiple targeting prevention. Biofactors 13: 49-54. https://doi.org/10.1002/biof.5520130109
  9. Wolfe K, Wu X, Liu RH. 2003. Antioxidant activity of apple peels. J Agric Food Chem 51: 609-614. https://doi.org/10.1021/jf020782a
  10. Akiyama H, Sakushima J, Taniuchi S, Kanda T, Yanagida A, Kojima T, Teshima R, Kobayashi Y, Goda Y, Toyoda M. 2000. Antiallergic effect of apple polyphenols on the allergic model mouse. Biol Pharm Bull 23: 1370-1373. https://doi.org/10.1248/bpb.23.1370
  11. Kojima T, Akiyama H, Sasai M, Taniuchi S, Goda Y, Toyoda M, Kobayashi Y. 2000. Anti-allergic effect of apple polyphenol on patients with atopic dermatitis: A pilot study. Allergol Int 49: 69-73. https://doi.org/10.1046/j.1440-1592.2000.00161.x
  12. Miura D, Miura Y, Yagasaki K. 2007. Effect of apple polyphenol extract on hepatoma proliferation and invasion in culture and on tumor growth, metastasis, and abnormal lipoprotein profiles in hepatoma-bearing rats. Biosci Biotechnol Biochem 71: 2743-2750. https://doi.org/10.1271/bbb.70359
  13. Pearson DA, Tan CH, German JB, Davis PA, Gershwin ME. 1999. Apple juice inhibits human low density lipoprotein oxidation. Life Sci 64: 1913-1920. https://doi.org/10.1016/S0024-3205(99)00137-X
  14. Sugiyama H, Akazome Y, Shoji T, Yamaguchi A, Yasue M, Kanda T, Ohtake Y. 2007. Oligomeric procyanidins in apple polyphenol are main active components for inhibition of pancreatic lipase and triglyceride absorption. J Agric Food Chem 55: 4604-4609. https://doi.org/10.1021/jf070569k
  15. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  16. Benzie IF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem 230: 70-76.
  17. Gao X, Bjork L, Trajkovski V, Uggla M. 2000. Evaluation of antioxidant activities of rosehip ethanol extracts in different test systems. J Sci Food Agric 80: 2021-2027. https://doi.org/10.1002/1097-0010(200011)80:14<2021::AID-JSFA745>3.0.CO;2-2
  18. Flurkey WH. 1991. Identification of tyrosinase in mushrooms by isoelectric focusing. J Food Sci 56: 93-95. https://doi.org/10.1111/j.1365-2621.1991.tb07983.x
  19. Jung DW, Park SI. 2005. Effect of green tea powder on the growth inhibition of oral bacteria in yoghurt. Korean J Food Sci Ani Resour 25: 500-506.
  20. Jung, SJ, Lee JH, Song HN, Seong NS, Lee SE, Baek NI. 2004. Screening for antioxidant activity of plant medicinal extracts. J Korean Soc Appl Biol Chem 47: 135-140.
  21. Moon GS, Ryu BM, Lee MJ. 2003. Components and antioxidative activities of buchu (Chinese chives) harvested at different times. Korean J Food Sci Technol 35: 493-498.
  22. Osawa T. 1994. Novel natural antioxidant for utilization in food and biological system. In Postharvest Biochemistry of Plant Food Material in the Tropics. Uritani I, Garcia VV, Mendoza EM, eds. Japan Scientific Societies Press, Tokyo, Japan. p 241-251.
  23. Brewer MS, Ikins WG, Harbers CAAZ. 1992. TBA values, sensory characteristics, and volatiles in ground fork during long-term frozen storage: Effects of packaging. J Food Sci 57: 558-563. https://doi.org/10.1111/j.1365-2621.1992.tb08042.x
  24. Lee BM, Kim HI. 1996. Stevioside, a natural sweetener: Is it safe? J Food Hyg Safety 11: 323-327.
  25. Shin SE, Kim MK. 2004. Effect of dried powders or ethanol extracts of garlic flesh and peel on antioxidative capacity in 16-month-old rats. Korean J Nutr 37: 633-644.
  26. Kang YH, Park YK, Oh SR, Moon KD. 1995. Studies on the physiological functionality of pine needle and mugwort extracts. Korean J Food Sci Technol 27: 978-984.
  27. Kim NY, Kim YK, Bae KJ, Choi JH, Moon JH, Park GH, Oh DH. 2005. Free radical scavenging effect and extraction condition of ethanol extracts and fractions of wild grape seed (Vitis coignetiea). J Korean Soc Food Sci Nutr 34:755-758. https://doi.org/10.3746/jkfn.2005.34.6.755

Cited by

  1. Immune-Enhancing Effects of Polysaccharides Isolated from Ascidian (Halocynthia roretzi) Tunic vol.44, pp.5, 2015, https://doi.org/10.3746/jkfn.2015.44.5.673
  2. Comparison of Antioxidative Activities of Fuji Apples Parts according to Production Region vol.44, pp.4, 2015, https://doi.org/10.3746/jkfn.2015.44.4.557
  3. Citrus Ethanol Extracts Promotes Innate Immune Response by Activating NF-κB vol.44, pp.9, 2015, https://doi.org/10.3746/jkfn.2015.44.9.1256
  4. Immunostimulatory and Antioxidant Activities of Steamed Garlic Grown in Different Countries vol.31, pp.2, 2016, https://doi.org/10.13103/JFHS.2016.31.2.126
  5. Inhibitory Activity of Sargassum hemiphyllum Ethanol Extract on Inflammatory Response in LPS-induced RAW 264.7 Cells and Mouse Model vol.32, pp.4, 2017, https://doi.org/10.7841/ksbbj.2017.32.4.319
  6. Antioxidant and biological activities of untreated and steam-treated Corni fructus extracts vol.25, pp.3, 2018, https://doi.org/10.11002/kjfp.2018.25.3.366
  7. LPS로 유발한 대식세포의 염증반응과 마우스 귀 부종에 대한 구멍갈파래 에탄올 추출물의 항염증 효과 vol.44, pp.4, 2013, https://doi.org/10.4014/mbl.1609.09006
  8. LPS로 유도된 RAW 264.7 cell과 마우스 귀 부종 모델을 통한 쌍발이 모자반 에탄올 추출물의 항염증 효과 vol.45, pp.2, 2013, https://doi.org/10.4014/mbl.1610.10002