DOI QR코드

DOI QR Code

Analysis of Characteristic of Graphene Thin Film Transistor and Properties of Graphene using Copper Substrate

구리기판을 이용한 그래핀 박막 특성 및 그래핀을 이용한 트랜지스터의 특성 분석

  • Oh, Teresa (Department of Semiconductor Engineering, Cheongju University)
  • Received : 2013.05.20
  • Accepted : 2013.07.23
  • Published : 2013.09.30

Abstract

Graphene thin film was prepared on the copper foils by chemical deposition, and the characteristic of graphene depending on $H_2$ and CH4 gas flow rates was analyzed by the Raman spectra. The graphene formation was improved with increment of methan gas flow rates. The increment of hydrogen gas flow rate made high intensity of D($1350cm^{-1}$) and G($1580cm^{-1}$). The peak of D($1350cm^{-1}$) is related with the defects, and the 2D($2700cm^{-1}$) increased depending on the increment of amount of methan gas flow rate. The rate of G/2D indicates the quality of garphene to like a monolayer, and the small value of G/2D means better grapheme. The G/2D of graphene after annealed at $200^{\circ}C$ was 0.55 and improved the characteristic of graphene than the deposited-grapnene. Thin film transistor with graphene as an active channel was p-type semiconductor.

화학적 증착방법으로 구리기판 위에 그래핀을 형성하고 일반적인 전사방법을 이용하여 그래핀 박막을 제작하였다. 메탄과 수소 가스의 유량비에 따른 특성에 대하여 라만 분석법을 이용하여 조사하였다. 메탄의 유량이 많을수록 그래핀의 형성이 잘 이루어지는 것을 확인하였다. 수소의 양이 증가할수록 D ($1350cm^{-1}$), G ($1580cm^{-1}$) 대역이 증가하였으며, 상대적으로 메탄의 유량비가 증가할수록 2D ($2700cm^{-1}$)의 픽이 강도가 증하였다. D ($1350cm^{-1}$)은 결함과 관련되어 있는 픽이다. 그래핀의 단층확인은 G/2D의 비율이 작을수록 그래핀이 단일박막임을 알 수 있고, 200도에서 열처리 후 0.55의 값을 나타내는 것을 확인하였다. 그래핀 채널 트랜지스터를 제작한 결과 p 형 반도체로서의 전달특성이 나타나는 것을 확인하였다.

Keywords

References

  1. D. Geng, B. Wu, Y. Guo, L. Huang, Y. Xue, J. Chen, G. Yu, L. Jiang, W. Hu and Y. Liu, "Uniform hexagonal graphene flakes and films grown on liquid copper surface," PNAS, 21, 2012, pp. 7992-7996.
  2. Wan Young Jung, Yung Su Seo, Jong Gin Kim, Tae Ha Kwon, "LED visible light communication and their application," The Journal of the Korean Institute of Information and Communication Engineering. 14, 2010, pp.1375- 1381. https://doi.org/10.6109/jkiice.2010.14.6.1375
  3. Vasilii I. Aeryukhov, Yuanyue Liu and Boris I. Yakobson, "Euailibrium at the ede and atomistic mechanisms of graphenegrowth," PNAS, 18, 2012, pp.15136-14140.
  4. H. M. W. Khalil, O. Kelekci, H. Noh and Y. H. Xie, "Anisotropic electronic transport of graphene on a nano pltterned substrate," J. Korean Vacuum Soc. Soc. 5, 2012, pp.279-285.
  5. S. Suzuki, Y. Takei, K. Furukawa, F. Webber, S. Tanabe and H. Hibino, "Graphene growth from spin coated polymers without a gas," Jpn. J. Appl. Phys. 51, 2012, 06FD01. https://doi.org/10.7567/JJAP.51.06FD01
  6. R. Negishi, Y. Ohno, K. Maehashi, K. Matsumoto and Y. Kobayashi, "Carrier transport properties of the field effect transistors with graphene channel propared by chemical vapor deposition," Jpn. J. Appl. Phys. 51, 2012, 06FD03. https://doi.org/10.7567/JJAP.51.06FD03
  7. Shin Hae Na, Soo Kil Yun, "Effect of the thickness and the annealing conditions of thecatalytic Ni films on the graphene films brown by a rapid thermal pulse CVD," Materials Research of Korea, 21, 2011, pp. 78-82. https://doi.org/10.3740/MRSK.2011.21.2.78
  8. T. Oh, "Investigation on electrical properties of lowdielectric constant fluorinated amorphous carbon film" Jpn. J. Appl. Phys. Vol.45, pp. 7871-7875, 2006. https://doi.org/10.1143/JJAP.45.7871