DOI QR코드

DOI QR Code

Optimal Extraction and Characteristics of Lignocellulytic Enzymes from Various Spent Mushroom Composts

다양한 버섯 수확 후 배지로부터 목질섬유소 분해효소의 최적 추출 및 특성

  • Lim, Sun Hwa (Graduate School of Future Convergence Technology, Hankyong National University) ;
  • Lee, Yun Hae (Mushroom Research Institute, GARES) ;
  • Kang, Hee Wan (Graduate School of Future Convergence Technology, Hankyong National University)
  • 임선화 (한경대학교 미래융합기술대학원) ;
  • 이윤혜 (경기도농업기술원 버섯연구소) ;
  • 강희완 (한경대학교 미래융합기술대학원)
  • Received : 2013.08.18
  • Accepted : 2013.09.25
  • Published : 2013.09.30

Abstract

Recovery of ${\alpha}$-amylase (EC 3.2.1.1), lignin peroxidase (EC 1.11.1.14), laccase (EC 1.10.3.2), xylanase (EC 3.2.1.8), ${\beta}$-xylosidase (EC 3.2.1.37), ${\beta}$-glucosidase (EC 3.2.1.21) and cellulase (EC 3.2.1.4) from spent mushroom composts (SMCs) of Pleurotus cornucopiae, Pleurotus ostreatus, Pleurotus eryngii, Hericium erinaceum, Lyophyllum ulmarium, Agrocybe cylindracea, Lentinus lepideus, and Flammulina velvtipes were investigated using different extraction buffers. The maximum recovery of the enzymes was mostly detected in SMC extracts with tap water and 0.25% Triton X-100 by shaking incubation (200 rpm) for 2 h at $4^{\circ}C$. The xylanase (152 U/g) and laccase (8.1 U/g) activities were the highest in SMC extracts from F. velvtipes and P. eryngii. In addition, high enzymatic activities of ${\alpha}$-amylase (3.6 U/g) and cellulase (3.4 U/g) was detected in SMC extract of A. cylindracea. Futhermore, cellulase and laccase activities of SMCE from P. eryngii were compared to commercial enzymes.

느타리버섯(Pleurotus ostreatus), 큰느타리버섯(Pleurotus eryngii), 팽이버섯(Flammulina velvtipes)과 노루궁뎅이버섯(Hericium erinaceum), 느티만가닥버섯(Lyophyllum ulmarium), 노랑느타리버섯(Pleurotus cornucopiae), 잣버섯(Lentinus lepideus), 버들송이버섯(Agrocybe cylindracea)의 수확 후 배지 (spent mushroom compost, SMC)로부터 ${\alpha}$-amylase (EC 3.2.1.1), lignin peroxidase (EC 1.11.1.14), laccase (EC 1.10.3.2), xylanase (EC 3.2.1.8), ${\beta}$-xylosidase (EC 3.2.1.37), ${\beta}$-glucosidase (EC 3.2.1.21) 및 cellulase (EC 3.2.1.4)의 활성을 추출 buffer별로 조사하였다. 물과 0.25% Triton X-100가 효소 회수율이 높았으며 xylanase는 팽이버섯 SMC에서 153 U/g으로 가장 많이 생산되었으며 laccase는 큰느타리버섯 SMC에서 8.0 U/g로 가장 높았다. ${\alpha}$-amylase (3.6 U/g)와 cellulase (3.2 U/g)는 버들송이 SMC에서 가장 많이 생산되었다. 큰느타리버섯 SMC 추출물의 laccase와 cellulase 활성은 상용 효소와 필적하는 효소활성을 보여 산업적 이용 가능성을 시사하였다.

Keywords

References

  1. Ayala, M., Gonzalez-Munoz, S. S., Pinos-Rodriguez, J. M., Vazquez, C., Meneses, M., Loera, O. and Mendoza, G. D. 2011. Fibrolytic potential of spent compost of Agaicus birsporus to degrade forages for ruminants. African J. Microbiol. Res. 5: 643-650.
  2. Ball, A. S and Jacson, A. M. 1995. The recovery of lignocelluloseo- degrading enzymes from spent mushroom compost. Biores. Technol. 54:311-314. https://doi.org/10.1016/0960-8524(95)00153-0
  3. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytic. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Claus, H., Faber, G. and Konig, H. 2002. Redox mediated decolorization of synthetic dyes by fungal laccases. Appl. Microb. Biotech. 59: 672-678. https://doi.org/10.1007/s00253-002-1047-z
  5. Couto, S. R. and Toca Herrera, J. L. 2006. Industrial and biotechnological applications of laccases: A review. Biotechnol. Adv. 24: 500-513. https://doi.org/10.1016/j.biotechadv.2006.04.003
  6. Devi, V. M., Inbathamizh, L., Ponnu, T. M., Premalatha, S and Divya, M. 2012. Dye decolorization using fungal laccase. Bull. Environ. Pharmacol. Life Sci. 1:67-71.
  7. Eggert, C, U., Temp, J. F., Dean and Eriksson, K. E. 1996. A fungal metabolite mediates degradation of nonphenolic lignin structures and synthetic lignin by laccase. FEBS Lett. 391:144-148. https://doi.org/10.1016/0014-5793(96)00719-3
  8. Field, J. A., E. De Jong, G. Feijoo-Costa, and DeBont, J. A. M. 1993. Screening for ligninolytic fungi applicable to the biodegradation of xenobiotics. Trends Biotechnol. 11:44-49. https://doi.org/10.1016/0167-7799(93)90121-O
  9. Gasecka, M., Drzewiecka, K., Stachowiak, J., Siwulski, M., Golin'ski, P., Sobieralski, K. and Golak, I. 2012. Degradation of polycyclic aromatic hydrocarbons (PAHs) by spent mushroom substrates of Agaricus bisporus and Lentinula edodes. Acta Scientiarum Polonorum - Hortorum Cultus 11:39-46.
  10. Gianluca, B., Chiara L., Giovanni, M., Patrizia, R., Carla, P., Luciano, V. and Francesco, G. 2008. Molecular cloning and heterologous expression of a laccase gene from Pleurotus eryngii in free and immobilized Saccharomyces cerevisiae cells. Appl. Microbiol. Biotechnol. 79:731-741. https://doi.org/10.1007/s00253-008-1479-1
  11. Guo, M., Lu, F., Pu, J., Bai, D. and Du, L. 2005. Molecular cloning of the DNA encoding laccase from Trametes versicolor and heterologous expression in Pichia methanolica. Appl. Microbiol. Biotechnol. 69:178-183. https://doi.org/10.1007/s00253-005-1985-3
  12. Hideno, A., Aoyagi, H., Isobe, S. and Tanaka, H. 2007. Utilization of spent sawdust matrix after cultivation of Grifola frondosa as substrate for ethanol production by simultaneous saccharification and fermentation. Food Sci. Technol. Res. 13:111-117. https://doi.org/10.3136/fstr.13.111
  13. Ko, H. K., Park, S. H., Kim, S. H., Park, H. G and Park, W. M. 2005. Detection and recovery of hydrolytic enzymes from spent compost of four mushroom species. Folia Microbiol. 50:103-106. https://doi.org/10.1007/BF02931456
  14. Kunamneni, A., Ballesteros A., Plou, F. J. and Alcade, M. 2007. "Fungal laccases. a versatile enzyme for biotechnological applications," in Communicating Current Research and Educational Topics and Trends in Applied Microbiology, A. Mendez- Vilas, Ed., pp. 233-245, Formatex, Badajoz, Spain,
  15. Lim,. S. H., Kim, J. K., Lee, Y. H. and Kang, H. W. 2012. Production of lignocellulytic enzymes from spent mushroom compost of Pleurotus eryngii. Kor. J. Mycol. 40: 152-158. (in Korean). https://doi.org/10.4489/KJM.2012.40.3.152
  16. Matcham, S. E. and Wood, D. A. 1992. Purification of Agaricus bisporus extracellular laccase from mushroom compost. Biotechnol. Lett. 14: 297-300. https://doi.org/10.1007/BF01022327
  17. Ministry of Agriculture, Food and Rural Affairs, 2011. [cited 2013 sep] Available from: http://library.mafra.go.kr/skyblueimage/17767.pdf
  18. Papinutti, L and Forchiassin, F. 2010. Adsorption and decolorization of dyes using solid residues from Pleurotus ostreatus mushroom production. Biotechnol. Bioprocess Eng. 15:1102-1109. https://doi.org/10.1007/s12257-010-0074-3
  19. Saranyu, K. and Rakrudee, S. 2007. Laccase from spent mushroom compost of Lentinus polychrous Lev. and its potential for remazol brilliant blue R decolourisation. Biotechnology 6: 408-413. https://doi.org/10.3923/biotech.2007.408.413
  20. Scarse, R. 1995. Cultivating mushrooms-the potential. Mycologist 9:18-19. https://doi.org/10.1016/S0269-915X(09)80242-5
  21. Singh, A. D., Abdullah N. and Vikineswary, S. 2003. Optimization of extraction of bulk enzymes from spent mushroom compost. J. Chem. Technol. Biotechnol. 78:743-752. https://doi.org/10.1002/jctb.852
  22. Shin, K, S, Oh, I. K. and Kim, C. J. 1997. Production and purification of remazol brilliant blue R. decolorizing peroxidase from the culture filtrate of Pleurotus ostreatus. Appl. Environ. Microbiol. 63:1744-1748.

Cited by

  1. Water Extract from Spent Mushroom Substrate ofHericium erinaceusSuppresses Bacterial Wilt Disease of Tomato vol.43, pp.3, 2015, https://doi.org/10.5941/MYCO.2015.43.3.311
  2. Effect of Spent Mushroom Substrates of Hericium erinaceum on Plant Pathogens of Tomato vol.43, pp.3, 2015, https://doi.org/10.4489/KJM.2015.43.3.185
  3. Control of Tomato Bacterial Wilt by the Prototypes Extracted from Spent Media Substrate of Hericium erinaceus vol.44, pp.4, 2016, https://doi.org/10.4489/KJM.2016.44.4.318
  4. Industrial applications and characteristics of lignocellulolytic enzymes in Basidiomycetous fungi vol.14, pp.2, 2016, https://doi.org/10.14480/JM.2016.14.2.51
  5. Decolorization Efficiency of Different Dyes by Extract from Spent Mushroom Substrates of Pleurotus eryngii vol.42, pp.3, 2014, https://doi.org/10.4489/KJM.2014.42.3.213
  6. Optimization of Extraction Conditions of Pleurotus cornucopiae by Response Surface Methodology vol.43, pp.10, 2014, https://doi.org/10.3746/jkfn.2014.43.10.1565