DOI QR코드

DOI QR Code

Simple Method to Discriminate the Fungicide Resistant Botrytis cinerea Strain in Tomatoes

토마토 잿빛곰팡이병균 약제저항성 간이 판별법

  • 이문행 (충청남도농업기술원 부여토마토시험장) ;
  • 이희경 (충청남도농업기술원 부여토마토시험장) ;
  • 김성은 (충청남도농업기술원 부여토마토시험장) ;
  • 이환구 (충청남도농업기술원 부여토마토시험장) ;
  • 이순계 (충청남도농업기술원 부여토마토시험장) ;
  • 유승헌 (충남대학교 응용생물학과) ;
  • 김영식 (상명대학교) ;
  • 김상우 (강원대학교 식물자원응용공학과) ;
  • 이윤수 (강원대학교 식물자원응용공학과)
  • Received : 2013.06.10
  • Accepted : 2013.09.17
  • Published : 2013.09.30

Abstract

Grey mold infection rate in tomato was investigated with the inoculation of dead flowers on Botrytis selective media. The grey mold infection rate of flower after fruiting were higher in the order of after 45 days, after 25 days, and fruiting day with 100%, 87% and 65%, respectively. The number of infected flowers were increased with time increase after the flowering before fruiting. BSM (Botrytis selective medium) was used to check grey mold infection rate depending on the flowering stage and cultivar. Grey mold infection rate depending on the flowering stage was similar in all the beef-tomato cultivar as 1.5~5% at preflowering, 1.5~45% at flowering and 75~90% at fruiting. On the other hand, cherry tomato cultivar "KoKo" had lower infection rates of 0~3.5% at pre-flowering, 10~30% at flowering and 20~50% at fruiting. These resulted from the fact that beaf-tomato cultivar have much bigger flowers and larger amount of pollens compared to those of cherry tomato cultivar. The amounts of falling pollens of Botrytis spp. were checked for beaf-tomato cultivar and cherry tomato cultivar using BSTM. The amounts of falling pollens were increased as growth period was extended, and the amount of spores increased rapidly during the outbreak of grey mold. Twelve field trials in Buyeo and Iksan areas showed that Fluazinam, and Diethofencarb+Carbendazim were effective fungicides to control tomato grey mold, and these results were similar to those of field trials with BSTM. This is the first report of Fluazinam as a effective fungicide for the control of grey mold of tomato even though it has not been registered yet for the control of gray mold in tomato.

Botrytis 선택배지(BSM)를 이용하여 토마토 포장에서 꽃잎의 감염시기를 착과 직후, 착과 25일 후, 착과 45일 후로 나누어 조사하였던 바 착과 직후의 꽃잎에서는 65%의 감염률을 보였으나 착과 25일 후의 꽃잎에서는 87%, 45일 후의 꽃잎에서는 100%의 감염률을 보였다. 착과 후 시간이 지날수록 잿빛곰팡이병균의 꽃잎 감염율은 증가하였다. 한편, 토마토 품종별 꽃잎의 감염시기를 개화 전, 개화 후, 착과 후로 구분하여 조사하였던 바 전체적으로 개화 전에 비하여 개화 후 시간이 지날수록 감염율이 급격히 증가하였으며, 일반토마토 3품종의 감염율이 방울토마토에 비하여 현저히 높았다. 즉 일반토마토의 착과 후 꽃잎 감염율이 70~80%인데 비하여 방울토마토의 꽃잎 감염율은 20~45%였다. 일반토마토 및 방울토마토 포장에서 잿빛곰팡이병균의 포자 비산량을 BSTM을 이용하여 조사한 결과 토마토 생육기간이 길어질수록 비산 포자량은 증가하였으며 특히 일반 토마토품종에서 잿빛곰팡이병의 발생 이후에 급격하게 증가하였다. 그러나 포장 내의 병원균 포자비산량의 증가에도 불구하고 방울토마토는 잿빛곰팡이병의 발병이 매우 적었다. BSM 및 BSTM을 이용한 잿빛곰팡이병 약제저항성균 간이검정법의 포장 적용시험을 통하여 바 이들의 활용가능성을 확인하였으며, 부여 및 익산지역 12농가에서 8개 약제를 공시하여 실증시험을 실시하였던 바 fluazinam 및 diethofencarb+carbendazim 혼합제가 주로 방제에 적합한 약제로 판정되었다. BSM을 이용한 kit는 잿빛곰팡이병이 발생하기 이전에 조기에 약제 저항성 병원균 판별이 가능하나 8개의 약제배지에 접종할 경우 2시간 정도의 시간이 필요하다. BSTM을 활용한 kit는 배지를 설치 후 24시간이 지난 후 수거하기 때문에 사용은 간편하나 잿빛곰팡이병이 발생하기 이전에 설치하면 낙하 포자량이 적어 약제저항성균 판별에 어려움이 있을 것이라 생각된다.

Keywords

References

  1. Agrios, G. N. 1988. Plant Pathology, Academic Press, Inc., New York. pp. 803.
  2. Baek, S. B. 1984. Research of chemical resistant in Grey mold (Botrytis cinerea). Konkuk Univ., A. R. D. collected papers. 9: 35-44. (in Korean).
  3. Bristow, P. R., Mcnicol, R. J. and Williamson, B. 2008. Infection of strawberry flowers by Botrytis cinerea and its relevance to grey mould development. Ann. Appl. Biol. 3:545-554.
  4. Delp, C. J. 1988. Fungicide resistance in North America. The American Phytopathological Society, St. Paul, Minn., pp. 133.
  5. Delp, C. J. and Dekker, J. 1985. Fungicide resistance: definitions and use of terms. OEPP/EPPO Bulletin 15:333-335. https://doi.org/10.1111/j.1365-2338.1985.tb00237.x
  6. Edlich, W. and Lyr, H. 1992. Target sites of fungicide with primary effects on lipid peroxidation. In: Target Sites of Fungicide Action, ed. by W. Koller, 53-68. CRC Press.
  7. Edwards, S. G. and Sedden, B. 2001. Selective media for the specific isolation and enumeration of Botrytis cinerea conidia. Lett. Appl. Microbiol., 32:63-66. https://doi.org/10.1046/j.1472-765x.2001.00857.x
  8. Elad, Y., Kohl, J. and Fokema, N. J. 1994. Control of infection and sporulation of Botrytis cinerea on bean and tomato by saprophytic yeast. Phytopathology 84:1193-1200. https://doi.org/10.1094/Phyto-84-1193
  9. Eland, Y., Shabi E. and Katan, T. 1988. Negative cross resistance between benzimidazole and N-phenylcarbamate fungicides and control of Botrytis cinerea on grapes. Plant Pathol. 37: 141-147. https://doi.org/10.1111/j.1365-3059.1988.tb02206.x
  10. Elad, Y., Yunis, H. and Katan, T. 1992. Multiple fungicide resistance to benzimidazoles, dicarboximides and diethofencarb in field isolates of Botrytis cinerea in Israel. Plant Pathol. 41:41-46. https://doi.org/10.1111/j.1365-3059.1992.tb02314.x
  11. English, J. T., Thomas, C. S., Marois, J. J. and Gubbler, W. D. 1989. Microclimates of grapevine canopies with leaf remove and control of Botrytis binc rot. Phytopthology 79:395-401. https://doi.org/10.1094/Phyto-79-395
  12. Faretra, F., Pollastro, S. and Di Tonno, A. P. 1989. New natural variantsof Botryotinia fuckeliana (Botrytis cinerea) coupling benzimidazole-resistance to insensitivity toward the N-phenylcarbamate diethofencarb. Phytopathol. Medit. 28:98-104.
  13. Georgopoulous, S. G. and Skylakakis, G. 1986. Genetic variability in the fungi and problem of fungicide resistance. Plant prot. 5:299-305.
  14. Gullino, M. L., Aloi, C. and Garibaldi, A. 1989. Influence of spray schedules on fungicide resistant populations of Botrytis cinerea Pers. on grapevine. Neth. J. Plant Pathol. 95:87-94. https://doi.org/10.1007/BF01974287
  15. Javis, W. R. 1977. Botryotinia and Botrytis species: Taxonomy, physiology, and pathogenicity. pp. 195.
  16. Katan, T., Elad, Y. and Yunis, H. 1989. Resistance to diethofencarb (NPC) in benomyl-resistant field isolates of Botrytis cinerea. Plant Pathol. 38:86-92. https://doi.org/10.1111/j.1365-3059.1989.tb01431.x
  17. Kohl, J. W., Molhoek, H. L., Van der Plas, C. H. and Fokkema, H. J. 1995. Effect of Ulocladium atrum and other antagonists on sporulation of Botrytis cinerea on dead lily leaves exposed to field condition. Phytopathology 85:393-400. https://doi.org/10.1094/Phyto-85-393
  18. Leroux, P. and Fritz, R. 1984. Antifungal activity of dicarboximides and aromatic hydrocarbons and resistance to these fungicides . In: Mode of action of antifungal agents, Ed. Trinci, A. P. J., and Ryley, J. F., pp. 207- 237. Cambridge Press, Cambridge.
  19. Leroux, P. and Gredt , M. 1984. Resistance to fungicides which inhibit ergosterol biosynthesis in laboratory st rains of Botrytis cinerea and Ustilago maydis. Pestic. Sci. 15:85-89. https://doi.org/10.1002/ps.2780150113
  20. Murakoshi, S. and Hosaya, S. 1982. Occurrence of Botrysis cinerea resistant to iprodione in tomato fields. Ann Phytopathol. Soc. Jpn. 48:547-550. https://doi.org/10.3186/jjphytopath.48.547
  21. Olivier Viret, Markus Keller, V. gunta Jaudzems and F. Mary Cole. 2004. Botrytis cinerea infection of grape flowers: Light and electron microscopical studies of infection sites. Phytophatology 94:850-857. https://doi.org/10.1094/PHYTO.2004.94.8.850
  22. Perryman, S. A. M., Fitt, B. D. L. and Harold, J. F. S. 2003. Factors affecting the development of Botrytis cinerea (grey mould) on linseed (Linum usitatissimum) buds, flowers and capsules. Ann. Appl. Biol. 140:1-12.
  23. Sutton, J. C. and Peng, G. 1993. Biocontrol of Botrytis cinerea in strawberry leaves. Phytopathology 83:615-621. https://doi.org/10.1094/Phyto-83-615
  24. Gisi, K. H., 1982. New diagnosis and control of pest in vegetable. national farmer education association. pp. 651. Japan.
  25. Kim, B. S., 1997. Fungicide Resistance and Physiological of Botrytis cinerea. Ph. D. Diss., Seoul National Univ. (in Korean).